Viktor Yarotskyy , Liangru Contois , Yun-Kyung Hahn , Sara R. Nass , Pamela E. Knapp , Kurt F. Hauser
{"title":"Novel voltage-dependent Cl− channels in striatal medium spiny neurons are unrelated to ClC-1 or other known Ca2+-induced Cl− channel/transporter types","authors":"Viktor Yarotskyy , Liangru Contois , Yun-Kyung Hahn , Sara R. Nass , Pamela E. Knapp , Kurt F. Hauser","doi":"10.1016/j.neulet.2024.138032","DOIUrl":null,"url":null,"abstract":"<div><div>Intracellular chloride (Cl<sup>−</sup>) homeostasis is a critical regulator of neuronal excitability. Voltage-dependent neuronal Cl<sup>−</sup> channels remain the least understood in terms of their role as a source of Cl<sup>−</sup> entry controlling excitability. We have shown recently that striatal medium spiny neurons (MSNs) express a functional Cl<sup>−</sup> conducting ClC-1-like channel with properties similar but not identical to native ClC-1 channels (Yarotskyy, V., Lark, A.R.S., Nass S.R., Hahn, Y.K., Marone, M.G., McQuiston, A.R., Knapp, P.E., Hauser, K.F. (2022) <em>Am. J. Physiol. Cell. Physiol.</em> 322 (2022) C395-C409). Using a myotonic SWR/J-<em>Clcn1<sup>adr-mto</sup></em>/J mouse model with a premature stop codon for the ClC-1 channel rendering it non-functional, we demonstrate that striatal MSNs isolated from wild type (wt) and homozygous mutant (<em>adr</em>) mouse embryos have identical voltage-dependent outwardly rectifying Cl<sup>−</sup> currents. In contrast and as expected, homozygous <em>adr</em> skeletal muscle <em>flexor digitorum brevis</em> (FDB) fibers display nominal macroscopic Cl<sup>−</sup> currents compared to heterozygous wild-type <em>adr</em> FDB fibers. Together, our findings demonstrate that the novel ClC-1-like channels in MSNs are unrelated to skeletal muscle-specific ClC-1 channels, and therefore represent a unique voltage-dependent neuronal Cl<sup>−</sup> channel of unknown identity.</div></div>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":"844 ","pages":"Article 138032"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304394024004117","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Intracellular chloride (Cl−) homeostasis is a critical regulator of neuronal excitability. Voltage-dependent neuronal Cl− channels remain the least understood in terms of their role as a source of Cl− entry controlling excitability. We have shown recently that striatal medium spiny neurons (MSNs) express a functional Cl− conducting ClC-1-like channel with properties similar but not identical to native ClC-1 channels (Yarotskyy, V., Lark, A.R.S., Nass S.R., Hahn, Y.K., Marone, M.G., McQuiston, A.R., Knapp, P.E., Hauser, K.F. (2022) Am. J. Physiol. Cell. Physiol. 322 (2022) C395-C409). Using a myotonic SWR/J-Clcn1adr-mto/J mouse model with a premature stop codon for the ClC-1 channel rendering it non-functional, we demonstrate that striatal MSNs isolated from wild type (wt) and homozygous mutant (adr) mouse embryos have identical voltage-dependent outwardly rectifying Cl− currents. In contrast and as expected, homozygous adr skeletal muscle flexor digitorum brevis (FDB) fibers display nominal macroscopic Cl− currents compared to heterozygous wild-type adr FDB fibers. Together, our findings demonstrate that the novel ClC-1-like channels in MSNs are unrelated to skeletal muscle-specific ClC-1 channels, and therefore represent a unique voltage-dependent neuronal Cl− channel of unknown identity.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.