Big data and artificial intelligence applied to blood and CSF fluid biomarkers in multiple sclerosis.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2024-10-18 eCollection Date: 2024-01-01 DOI:10.3389/fimmu.2024.1459502
Georgina Arrambide, Manuel Comabella, Carmen Tur
{"title":"Big data and artificial intelligence applied to blood and CSF fluid biomarkers in multiple sclerosis.","authors":"Georgina Arrambide, Manuel Comabella, Carmen Tur","doi":"10.3389/fimmu.2024.1459502","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) has meant a turning point in data analysis, allowing predictions of unseen outcomes with precedented levels of accuracy. In multiple sclerosis (MS), a chronic inflammatory-demyelinating condition of the central nervous system with a complex pathogenesis and potentially devastating consequences, AI-based models have shown promising preliminary results, especially when using neuroimaging data as model input or predictor variables. The application of AI-based methodologies to serum/blood and CSF biomarkers has been less explored, according to the literature, despite its great potential. In this review, we aimed to investigate and summarise the recent advances in AI methods applied to body fluid biomarkers in MS, highlighting the key features of the most representative studies, while illustrating their limitations and future directions.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527669/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fimmu.2024.1459502","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) has meant a turning point in data analysis, allowing predictions of unseen outcomes with precedented levels of accuracy. In multiple sclerosis (MS), a chronic inflammatory-demyelinating condition of the central nervous system with a complex pathogenesis and potentially devastating consequences, AI-based models have shown promising preliminary results, especially when using neuroimaging data as model input or predictor variables. The application of AI-based methodologies to serum/blood and CSF biomarkers has been less explored, according to the literature, despite its great potential. In this review, we aimed to investigate and summarise the recent advances in AI methods applied to body fluid biomarkers in MS, highlighting the key features of the most representative studies, while illustrating their limitations and future directions.

将大数据和人工智能应用于多发性硬化症的血液和脑脊液生物标记物。
人工智能(AI)是数据分析领域的一个转折点,它能以前所未有的准确度预测未知结果。多发性硬化症(MS)是中枢神经系统的一种慢性炎症性脱髓鞘疾病,发病机制复杂,有可能造成毁灭性后果,在这种疾病中,基于人工智能的模型已显示出良好的初步结果,尤其是在使用神经影像数据作为模型输入或预测变量时。根据文献记载,基于人工智能的方法在血清/血液和脑脊液生物标志物中的应用虽然潜力巨大,但探索较少。在本综述中,我们旨在调查和总结将人工智能方法应用于多发性硬化症体液生物标志物的最新进展,突出最具代表性研究的主要特点,同时说明其局限性和未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信