Sa Wang, Pengyu Wang, Xiaotong Song, Xinyuan Ma, Long Wei, Yongxiang Zheng, Rong Yu, Chun Zhang
{"title":"Site-specific dimerization of interleukin-11 alleviates bleomycin-induced pulmonary fibrosis in mice","authors":"Sa Wang, Pengyu Wang, Xiaotong Song, Xinyuan Ma, Long Wei, Yongxiang Zheng, Rong Yu, Chun Zhang","doi":"10.1016/j.ejps.2024.106953","DOIUrl":null,"url":null,"abstract":"<div><div>Interleukin-11 (IL-11) has recently been identified as a critical profibrotic cytokine, and IL-11 signaling pathway via IL-11Rα and GP130 receptors has been shown to be a promising therapeutic target for the treatment of fibrotic diseases. Herein, we devised two kinds of IL-11 dimer with receptor-biased binding ability through site-specific crosslinking at the interface involving GP130 binding and signaling, aiming to explore their therapeutic potentials for bleomycin-induced pulmonary fibrosis in mice. A single cysteine mutation at site W147 of human IL-11 (IL-11 W147C) was conducted for site-specific crosslinking. The ability of GP130 to bind to IL-11 W147C dimer was substantially weakened by cysteine-based dimerization, while the ability of IL-11 W147C dimer to bind to IL-11Rα was almost entirely preserved or even enhanced. The IL-11 W147C dimer potently inhibited TF-1 cell proliferation and TGF-β1-induced human lung fibroblast differentiation into myofibroblasts. We also showed that dimerization substantially extended the circulation time of IL-11 W147C dimer in healthy rats. Subcutaneous administration of IL-11 W147C dimer significantly reduced extracellular matrix deposition, preserved alveolar architecture and alleviated pulmonary fibrosis development in mice. The findings of this study may provide a general strategy for the design of cytokine-based receptor-biased antagonists and agonists targeting these multifaceted signaling pathways.</div></div>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":"204 ","pages":"Article 106953"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928098724002665","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Interleukin-11 (IL-11) has recently been identified as a critical profibrotic cytokine, and IL-11 signaling pathway via IL-11Rα and GP130 receptors has been shown to be a promising therapeutic target for the treatment of fibrotic diseases. Herein, we devised two kinds of IL-11 dimer with receptor-biased binding ability through site-specific crosslinking at the interface involving GP130 binding and signaling, aiming to explore their therapeutic potentials for bleomycin-induced pulmonary fibrosis in mice. A single cysteine mutation at site W147 of human IL-11 (IL-11 W147C) was conducted for site-specific crosslinking. The ability of GP130 to bind to IL-11 W147C dimer was substantially weakened by cysteine-based dimerization, while the ability of IL-11 W147C dimer to bind to IL-11Rα was almost entirely preserved or even enhanced. The IL-11 W147C dimer potently inhibited TF-1 cell proliferation and TGF-β1-induced human lung fibroblast differentiation into myofibroblasts. We also showed that dimerization substantially extended the circulation time of IL-11 W147C dimer in healthy rats. Subcutaneous administration of IL-11 W147C dimer significantly reduced extracellular matrix deposition, preserved alveolar architecture and alleviated pulmonary fibrosis development in mice. The findings of this study may provide a general strategy for the design of cytokine-based receptor-biased antagonists and agonists targeting these multifaceted signaling pathways.
期刊介绍:
The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development.
More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making.
Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.