Lipid Priming of Adipose Mesenchymal Stromal Cells with Docosahexaenoic Acid: Impact on Cell Differentiation, Senescence and the Secretome Neuroregulatory Profile.
Jonas Campos, Belém Sampaio-Marques, Diogo Santos, Sandra Barata-Antunes, Miguel Ribeiro, Sofia C Serra, Tiffany S Pinho, João Canto-Gomes, Ana Marote, Margarida Cortez, Nuno A Silva, Adina T Michael-Titus, António J Salgado
{"title":"Lipid Priming of Adipose Mesenchymal Stromal Cells with Docosahexaenoic Acid: Impact on Cell Differentiation, Senescence and the Secretome Neuroregulatory Profile.","authors":"Jonas Campos, Belém Sampaio-Marques, Diogo Santos, Sandra Barata-Antunes, Miguel Ribeiro, Sofia C Serra, Tiffany S Pinho, João Canto-Gomes, Ana Marote, Margarida Cortez, Nuno A Silva, Adina T Michael-Titus, António J Salgado","doi":"10.1007/s13770-024-00679-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Priming strategies that improve the functionality of MSCs may be required to address issues limiting successful clinical translation of MSC therapies. For conditions requiring high trophic support such as brain and spinal cord injuries, priming MSCs to produce higher levels of trophic factors may be instrumental to facilitate translation of current MSC therapies. We developed and tested a novel molecular priming paradigm using docosahexaenoic acid (DHA) to prime adipose tissue-derived mesenchymal stromal cells (ASCs) to enhance the secretome neuroregulatory potential.</p><p><strong>Methods: </strong>Comprehensive dose-response and time-course assays were carried to determine an optimal priming protocol. Secretome total protein measurements were taken in association with cell viability, density and morphometric assessments. Cell identity and differentiation capacity were studied by flow cytometry and lineage-specific markers. Cell growth was assessed by trypan-blue exclusion and senescence was probed over time using SA-β-gal, morphometry and gene expression. Secretomes were tested for their ability to support differentiation and neurite outgrowth of human neural progenitor cells (hNPCs). Neuroregulatory proteins in the secretome were identified using multiplex membrane arrays.</p><p><strong>Results: </strong>Priming with 40 µM DHA for 72 h significantly enhanced the biosynthetic capacity of ASCs, producing a secretome with higher protein levels and increased metabolic viability. DHA priming enhanced ASCs adipogenic differentiation and adapted their responses to replicative senescence induction. Furthermore, priming increased concentrations of neurotrophic factors in the secretome promoting neurite outgrowth and modulating the differentiation of hNPCs.</p><p><strong>Conclusions: </strong>These results provide proof-of-concept evidence that DHA priming is a viable strategy to improve the neuroregulatory profile of ASCs.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-024-00679-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Priming strategies that improve the functionality of MSCs may be required to address issues limiting successful clinical translation of MSC therapies. For conditions requiring high trophic support such as brain and spinal cord injuries, priming MSCs to produce higher levels of trophic factors may be instrumental to facilitate translation of current MSC therapies. We developed and tested a novel molecular priming paradigm using docosahexaenoic acid (DHA) to prime adipose tissue-derived mesenchymal stromal cells (ASCs) to enhance the secretome neuroregulatory potential.
Methods: Comprehensive dose-response and time-course assays were carried to determine an optimal priming protocol. Secretome total protein measurements were taken in association with cell viability, density and morphometric assessments. Cell identity and differentiation capacity were studied by flow cytometry and lineage-specific markers. Cell growth was assessed by trypan-blue exclusion and senescence was probed over time using SA-β-gal, morphometry and gene expression. Secretomes were tested for their ability to support differentiation and neurite outgrowth of human neural progenitor cells (hNPCs). Neuroregulatory proteins in the secretome were identified using multiplex membrane arrays.
Results: Priming with 40 µM DHA for 72 h significantly enhanced the biosynthetic capacity of ASCs, producing a secretome with higher protein levels and increased metabolic viability. DHA priming enhanced ASCs adipogenic differentiation and adapted their responses to replicative senescence induction. Furthermore, priming increased concentrations of neurotrophic factors in the secretome promoting neurite outgrowth and modulating the differentiation of hNPCs.
Conclusions: These results provide proof-of-concept evidence that DHA priming is a viable strategy to improve the neuroregulatory profile of ASCs.
期刊介绍:
Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.