{"title":"ZNF655 involved in the progression of multiple myeloma via the activation of AKT.","authors":"Haiming Kou, Shuqin Jiang, Xueqiong Wu, Changhua Jing, Xinxin Xu, Jiaju Wang, Cui Zhang, Wenting Liu, Yan Gao, Qian Men, Ping Lu, Zhenhui Lv","doi":"10.1002/cbin.12256","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple myeloma (MM) is an incurable hematological malignancy, and the number of MM patients is increasing year by year. Zinc finger protein 655 (ZNF655) has been shown to regulate various biological processes and is implicated in the progression of many diseases. However, the roles of ZNF655 in MM progression remains unclear. In this study, we aimed to explore the effects of ZNF655 on progression by detecting the alteration of the phenotypes and tumorigenesis induced by ZNF655 knockdown in MM. The expression level of ZNF655 in MM was clarified by real-time quantitative polymerase chain reaction assays. Furthermore, loss-of-function assays in vitro and in vivo was investigated the biological functions of ZNF655 in MM. These findings revealed that ZNF655 depletion remarkably inhibited MM cell proliferation, arrested cell cycle, and induced cell apoptosis. Mechanistically, ZNF655 was found to regulate AKT in MM. In conclusion, this study indicated that ZNF655 regulated the progression of MM via AKT activation and downregulation of ZNF655 may be a promising antitumor strategy in MM.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbin.12256","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy, and the number of MM patients is increasing year by year. Zinc finger protein 655 (ZNF655) has been shown to regulate various biological processes and is implicated in the progression of many diseases. However, the roles of ZNF655 in MM progression remains unclear. In this study, we aimed to explore the effects of ZNF655 on progression by detecting the alteration of the phenotypes and tumorigenesis induced by ZNF655 knockdown in MM. The expression level of ZNF655 in MM was clarified by real-time quantitative polymerase chain reaction assays. Furthermore, loss-of-function assays in vitro and in vivo was investigated the biological functions of ZNF655 in MM. These findings revealed that ZNF655 depletion remarkably inhibited MM cell proliferation, arrested cell cycle, and induced cell apoptosis. Mechanistically, ZNF655 was found to regulate AKT in MM. In conclusion, this study indicated that ZNF655 regulated the progression of MM via AKT activation and downregulation of ZNF655 may be a promising antitumor strategy in MM.
多发性骨髓瘤(MM)是一种无法治愈的血液系统恶性肿瘤,MM 患者人数逐年增加。锌指蛋白655(ZNF655)已被证明能调节多种生物过程,并与多种疾病的进展有关。然而,ZNF655在MM进展中的作用仍不清楚。在本研究中,我们旨在通过检测ZNF655敲除在MM中诱导的表型和肿瘤发生的改变来探索ZNF655对进展的影响。本研究通过实时定量聚合酶链反应测定明确了ZNF655在MM中的表达水平。此外,还通过体外和体内功能缺失实验研究了ZNF655在MM中的生物学功能。这些研究结果表明,ZNF655 的缺失能显著抑制 MM 细胞的增殖、抑制细胞周期并诱导细胞凋亡。从机理上讲,ZNF655 可调控 MM 中的 AKT。总之,这项研究表明,ZNF655通过激活AKT调控MM的进展,而下调ZNF655可能是治疗MM的一种有前景的抗肿瘤策略。
期刊介绍:
Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect.
These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.