Zikuo Liu, Linyuan Song, Yu Wang, Di Zhang, Jingxuan Liang, Yuzi Song, Xianjiang Kang, Cunqi Liu, Zhao Zhao
{"title":"Impact of extreme rainfall and flood events on harmful cyanobacterial communities and ecological safety in the Baiyangdian Lake Basin, China.","authors":"Zikuo Liu, Linyuan Song, Yu Wang, Di Zhang, Jingxuan Liang, Yuzi Song, Xianjiang Kang, Cunqi Liu, Zhao Zhao","doi":"10.1016/j.scitotenv.2024.177287","DOIUrl":null,"url":null,"abstract":"<p><p>Globally, climate change has intensified extreme rainfall events, leading to substantial hydrological changes in aquatic ecosystems. These changes, in turn, have increased the frequency of harmful algal blooms, particularly those of cyanobacteria. This study examines cyanobacterial community dynamics in the Baiyangdian Lake Basin, China, after heavy rainfall and flooding events. The aim was to clarify how such extreme hydrological events affect cyanobacterial populations in floodplain ecosystems and assess related ecological risks. The results demonstrated a significant increase in cyanobacterial diversity, exemplified by an increase of the Shannon diversity index from an average of 1.72 to 2.1 (p < 0.05). Following heavy rainfall and subsequent flooding, the average relative abundance of cyanobacteria in the microbial community increased from 7.59 % to 9.62 %, along a notable rise in the abundance of harmful cyanobacteria. The community structure exhibited notable differences after flooding, showing an increase in species richness, but a decrease in community tightness and clustering, as well as a reduction in niche overlap among harmful cyanobacteria. Environmental factors such as dissolved oxygen, water temperature, and pH were identified as crucial predictors of harmful cyanobacterial community differences and abundance variations resulting from flooding. These findings provide a critical framework for predicting ecological risks associated with the expansion of bloom-forming cyanobacteria in large shallow lake basins, particularly under intensified rainfall and flooding events. This insight is essential to anticipate potential ecological disruptions in sensitive aquatic ecosystems.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177287"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177287","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Globally, climate change has intensified extreme rainfall events, leading to substantial hydrological changes in aquatic ecosystems. These changes, in turn, have increased the frequency of harmful algal blooms, particularly those of cyanobacteria. This study examines cyanobacterial community dynamics in the Baiyangdian Lake Basin, China, after heavy rainfall and flooding events. The aim was to clarify how such extreme hydrological events affect cyanobacterial populations in floodplain ecosystems and assess related ecological risks. The results demonstrated a significant increase in cyanobacterial diversity, exemplified by an increase of the Shannon diversity index from an average of 1.72 to 2.1 (p < 0.05). Following heavy rainfall and subsequent flooding, the average relative abundance of cyanobacteria in the microbial community increased from 7.59 % to 9.62 %, along a notable rise in the abundance of harmful cyanobacteria. The community structure exhibited notable differences after flooding, showing an increase in species richness, but a decrease in community tightness and clustering, as well as a reduction in niche overlap among harmful cyanobacteria. Environmental factors such as dissolved oxygen, water temperature, and pH were identified as crucial predictors of harmful cyanobacterial community differences and abundance variations resulting from flooding. These findings provide a critical framework for predicting ecological risks associated with the expansion of bloom-forming cyanobacteria in large shallow lake basins, particularly under intensified rainfall and flooding events. This insight is essential to anticipate potential ecological disruptions in sensitive aquatic ecosystems.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.