Shiwei Ma, Shichang Xu, Huan Tao, Yunxia Huang, Changqing Feng, Guanpeng Huang, Shoukai Lin, Yiqiong Sun, Xuan Chen, Manegdebwaoga Arthur Fabrice Kabore, Samuel Tareke Woldegiorgis, Yufang Ai, Lina Zhang, Wei Liu, Huaqin He
{"title":"OsBRW1, a novel blast-resistant gene, coded a NBS-LRR protein to interact with OsSRFP1 to balance rice growth and resistance.","authors":"Shiwei Ma, Shichang Xu, Huan Tao, Yunxia Huang, Changqing Feng, Guanpeng Huang, Shoukai Lin, Yiqiong Sun, Xuan Chen, Manegdebwaoga Arthur Fabrice Kabore, Samuel Tareke Woldegiorgis, Yufang Ai, Lina Zhang, Wei Liu, Huaqin He","doi":"10.1111/pbi.14494","DOIUrl":null,"url":null,"abstract":"<p><p>It is urgent to mine novel blast-resistant genes in rice and develop new rice varieties with pyramiding blast-resistant genes. In this study, a new blast-resistant gene, OsBRW1, was screened from a set of rice near-isogenic lines (NILs) with different blast-resistant ability. Under the infection of Magnaporthe oryzae (M. oryzae), OsBRW1 in the resistant NIL Pi-4b was highly induced than that in the susceptible NIL Pi-1 and their parent line CO39, and the blast-resistant ability of OsBRW1 was further confirmed by using CRISPR/Cas9 knockout and over-expression methods. The protein encoded by OsBRW1 was a typical NBS-LRR with NB-ARC domain and localized in both cytoplasm and nucleus, and the transient expression of OsBRW1 was capable of triggering hypersensitive response in tobacco leaves. Protein interaction experiments showed that OsBRW1 protein directly interacted with OsSRFP1. At the early infection stage of M. oryzae, OsBRW1 gene induced OsSRFP1 to highly expression level and accumulated H<sub>2</sub>O<sub>2</sub>, up-regulated the defence responsive signalling transduction genes and the pathogenesis-related genes and increased JA and SA content in the resistant NIL Pi-4b. By contrary, lower content of endogenous JA and SA in osbrw1 mutants was found at the same stage. After that, OsSRFP1 was down-regulated to constitution abundance to balance the growth of the resistant NIL Pi-4b. In summary, OsBRW1 solicited OsSRFP1 to resist the infection of blast fungus in rice by inducing the synergism of induced systemic resistance (ISR) and system acquired resistance (SAR) and to balance the growth of rice plants.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":"250-267"},"PeriodicalIF":10.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672734/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14494","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
It is urgent to mine novel blast-resistant genes in rice and develop new rice varieties with pyramiding blast-resistant genes. In this study, a new blast-resistant gene, OsBRW1, was screened from a set of rice near-isogenic lines (NILs) with different blast-resistant ability. Under the infection of Magnaporthe oryzae (M. oryzae), OsBRW1 in the resistant NIL Pi-4b was highly induced than that in the susceptible NIL Pi-1 and their parent line CO39, and the blast-resistant ability of OsBRW1 was further confirmed by using CRISPR/Cas9 knockout and over-expression methods. The protein encoded by OsBRW1 was a typical NBS-LRR with NB-ARC domain and localized in both cytoplasm and nucleus, and the transient expression of OsBRW1 was capable of triggering hypersensitive response in tobacco leaves. Protein interaction experiments showed that OsBRW1 protein directly interacted with OsSRFP1. At the early infection stage of M. oryzae, OsBRW1 gene induced OsSRFP1 to highly expression level and accumulated H2O2, up-regulated the defence responsive signalling transduction genes and the pathogenesis-related genes and increased JA and SA content in the resistant NIL Pi-4b. By contrary, lower content of endogenous JA and SA in osbrw1 mutants was found at the same stage. After that, OsSRFP1 was down-regulated to constitution abundance to balance the growth of the resistant NIL Pi-4b. In summary, OsBRW1 solicited OsSRFP1 to resist the infection of blast fungus in rice by inducing the synergism of induced systemic resistance (ISR) and system acquired resistance (SAR) and to balance the growth of rice plants.
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.