Runqiao Dong , Daniel J. Goodwin , Joelle Nassar , Ranjit Dhenge , Sofia S.H. Matrali , Neil Hodnett , J. Axel Zeitler
{"title":"Roller compaction: Measuring ribbon porosity by terahertz spectroscopy and machine learning","authors":"Runqiao Dong , Daniel J. Goodwin , Joelle Nassar , Ranjit Dhenge , Sofia S.H. Matrali , Neil Hodnett , J. Axel Zeitler","doi":"10.1016/j.ijpharm.2024.124852","DOIUrl":null,"url":null,"abstract":"<div><div>Roller compaction is a crucial unit operation in pharmaceutical manufacturing, with its ribbon porosity widely recognised as a critical quality attribute. Terahertz spectroscopy has emerged as a fast and non-destructive technique to measure porosity in pharmaceutical products. From a sensing perspective, the irregular shape and uneven surface of fragmented ribbon pieces can affect the accuracy and precision of the measurements, particularly for techniques that probe only a small sampling volume. It is known that the porosity is not uniform within the ribbon structure, with variations expected across the width of the ribbon and in the microstructure corresponding to its surface texture. However, typical pharmaceutical analysis methods, such as envelope density, only report an average bulk porosity, are slow to operate and limited in accuracy. To address this challenge, we developed and trained convolutional neural network models using THz spectra as input to classify four types of topography typically encountered in ribbons: ridge, valley, flat plane and edge points. The classifiers achieved 91% validation accuracy in both identifying outliers and differentiating between ribbons of smooth and knurled surfaces. For the more challenging task of distinguishing between the ridges and valleys of knurled surfaces, an 81% testing accuracy was achieved. Once each measurement is paired with its topography, resolving the density distribution within the sample is possible. This data can be combined to arrive at an average bulk porosity value compatible with conventional pharmaceutical analysis.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"667 ","pages":"Article 124852"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037851732401086X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Roller compaction is a crucial unit operation in pharmaceutical manufacturing, with its ribbon porosity widely recognised as a critical quality attribute. Terahertz spectroscopy has emerged as a fast and non-destructive technique to measure porosity in pharmaceutical products. From a sensing perspective, the irregular shape and uneven surface of fragmented ribbon pieces can affect the accuracy and precision of the measurements, particularly for techniques that probe only a small sampling volume. It is known that the porosity is not uniform within the ribbon structure, with variations expected across the width of the ribbon and in the microstructure corresponding to its surface texture. However, typical pharmaceutical analysis methods, such as envelope density, only report an average bulk porosity, are slow to operate and limited in accuracy. To address this challenge, we developed and trained convolutional neural network models using THz spectra as input to classify four types of topography typically encountered in ribbons: ridge, valley, flat plane and edge points. The classifiers achieved 91% validation accuracy in both identifying outliers and differentiating between ribbons of smooth and knurled surfaces. For the more challenging task of distinguishing between the ridges and valleys of knurled surfaces, an 81% testing accuracy was achieved. Once each measurement is paired with its topography, resolving the density distribution within the sample is possible. This data can be combined to arrive at an average bulk porosity value compatible with conventional pharmaceutical analysis.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.