Junmin Pei, Changming Fang, Bo Li, Ming Nie, Jinquan Li
{"title":"Aridity-Driven Change in Microbial Carbon Use Efficiency and Its Linkage to Soil Carbon Storage","authors":"Junmin Pei, Changming Fang, Bo Li, Ming Nie, Jinquan Li","doi":"10.1111/gcb.17565","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Global warming is generally predicted to increase aridity in drylands, while the effects of aridity changes on microbial carbon use efficiency (CUE) and its linkage to soil organic carbon (SOC) storage remain unresolved, limiting the accuracy of soil carbon dynamic predictions under changing climates. Here, by employing large-scale soil sampling from 50 sites along an ~6000 km aridity gradient in northern China, we report a significant decreasing trend in microbial CUE (ranging from approximately 0.07 to 0.59 across the aridity gradient) with increasing aridity. The negative effect of aridity on microbial CUE was further verified by an independent moisture manipulation experiment, which revealed that CUE was lower under lower moisture levels than under higher moisture levels. Aridity-induced increases in physicochemical protection or decreases in microbial diversity primarily mediated the decrease in CUE with increasing aridity. Moreover, we found a highly positive microbial CUE–SOC relationship, and incorporating CUE improved the explanatory power of SOC variations along the aridity gradient. Our findings provide empirical evidence for aridity-induced reductions in microbial CUE over a broad geographic scale and highlight that increasing aridity may be a crucial mechanism underlying SOC loss by suppressing the ability of soil microorganisms to sequester carbon.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.17565","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Global warming is generally predicted to increase aridity in drylands, while the effects of aridity changes on microbial carbon use efficiency (CUE) and its linkage to soil organic carbon (SOC) storage remain unresolved, limiting the accuracy of soil carbon dynamic predictions under changing climates. Here, by employing large-scale soil sampling from 50 sites along an ~6000 km aridity gradient in northern China, we report a significant decreasing trend in microbial CUE (ranging from approximately 0.07 to 0.59 across the aridity gradient) with increasing aridity. The negative effect of aridity on microbial CUE was further verified by an independent moisture manipulation experiment, which revealed that CUE was lower under lower moisture levels than under higher moisture levels. Aridity-induced increases in physicochemical protection or decreases in microbial diversity primarily mediated the decrease in CUE with increasing aridity. Moreover, we found a highly positive microbial CUE–SOC relationship, and incorporating CUE improved the explanatory power of SOC variations along the aridity gradient. Our findings provide empirical evidence for aridity-induced reductions in microbial CUE over a broad geographic scale and highlight that increasing aridity may be a crucial mechanism underlying SOC loss by suppressing the ability of soil microorganisms to sequester carbon.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.