{"title":"Mechanical, Thermal, and Morphological Analysis of Himalayan Agave Fiber /GO Coated Fly Ash Hybrid Polypropylene Composites.","authors":"Piyush Kumar, Hariome Sharan Gupta, Manjinder Singh, Arjun S Chaudhari, Atul Kumar Maurya, Gaurav Manik","doi":"10.1002/chem.202402393","DOIUrl":null,"url":null,"abstract":"<p><p>Composites containing two different types of reinforcements offer a wide range of possibilities and synergistic properties. This study investigates the hybridization effect of chemically active fly ash (FA) (5 wt.%) on the composites made from alkali (1 wt.%) - APTES silane (2 wt.%) treated Himalayan agave fibers (HAF) (25 wt.%) and polypropylene (PP). Prior to FA activation, the planetary ball mill was used to suitably reduce the particle size of the FA with was confirmed by the dynamic light scattering approach. Secondary reinforcement FA was modified with APTES silane (1 wt.%), followed by treatment with graphene oxide (GO) (0.5, 0.75, and 1 wt.%). The highest tensile strength of 40.47 MPa and modulus of 1.49 GPa were observed for the hybrid composites fabricated from 0.75 and 1.0 wt.% GO treated fly ash. Interestingly, this trend differed for flexural properties, and the highest flexural strength of 53.52 MPa was demonstrated by 0.5 wt.% GO treated FA hybrid composite. Thermal characterization revealed that addition of fiber increased crystallinity but decreased thermal stability, whereas a good wettability of the fiber and FA in matrix was demonstrated through morphological characterization.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202402393","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Composites containing two different types of reinforcements offer a wide range of possibilities and synergistic properties. This study investigates the hybridization effect of chemically active fly ash (FA) (5 wt.%) on the composites made from alkali (1 wt.%) - APTES silane (2 wt.%) treated Himalayan agave fibers (HAF) (25 wt.%) and polypropylene (PP). Prior to FA activation, the planetary ball mill was used to suitably reduce the particle size of the FA with was confirmed by the dynamic light scattering approach. Secondary reinforcement FA was modified with APTES silane (1 wt.%), followed by treatment with graphene oxide (GO) (0.5, 0.75, and 1 wt.%). The highest tensile strength of 40.47 MPa and modulus of 1.49 GPa were observed for the hybrid composites fabricated from 0.75 and 1.0 wt.% GO treated fly ash. Interestingly, this trend differed for flexural properties, and the highest flexural strength of 53.52 MPa was demonstrated by 0.5 wt.% GO treated FA hybrid composite. Thermal characterization revealed that addition of fiber increased crystallinity but decreased thermal stability, whereas a good wettability of the fiber and FA in matrix was demonstrated through morphological characterization.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.