Supramolecular Crystals based Fast Single Ion Conductor for Long-cycling Solid Zinc Batteries.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ze Chen, Zhaodong Huang, Chenlu Wang, Dedi Li, Qi Xiong, Yanbo Wang, Yue Hou, Yanlei Wang, Ao Chen, Hongyan He, Chunyi Zhi
{"title":"Supramolecular Crystals based Fast Single Ion Conductor for Long-cycling Solid Zinc Batteries.","authors":"Ze Chen, Zhaodong Huang, Chenlu Wang, Dedi Li, Qi Xiong, Yanbo Wang, Yue Hou, Yanlei Wang, Ao Chen, Hongyan He, Chunyi Zhi","doi":"10.1002/anie.202406683","DOIUrl":null,"url":null,"abstract":"<p><p>The solid polymer electrolytes (SPEs) used in Zn-ion batteries (ZIBs) have low ionic conductivity due to the sluggish dynamics of polymer segments. Thus, only short-range movement of cations is supported, leading to low ionic conductivity and Zn2+ transference (tZn2+). Zn-based supramolecular crystals (ZMCs) have considerable potential for supporting long-distance Zn2+ transport; however, their efficiency in ZIBs has not been explored. The present study developed a ZMC consisting of succinonitrile (SN) and zinc bis(trifluoromethylsulfonyl)imide (Zn(TFSI)2), with a structural formula identified as Zn(TFSI)2SN3. The ZMC has ordered three-dimensional tunnels in the crystalline lattices for ion conduction, providing high ionic conductivities (6.02 × 10-4 S cm-1 at 25 °C and 3.26 × 10-5 S cm-1 at -35 °C) and a high tZn2+ (0.97). We demonstrated that a Zn‖Zn symmetrical battery with ZMCs has long-term cycling stability (1200 h) and a dendrite-free Zn plating/stripping process, even at a high plating areal density of 3 mAh cm-2. The as-fabricated solid-state Zn battery exhibited excellent performance, including high discharge capacity (1.52 mAh cm-2), long-term cycling stability (83.6% capacity retention after 70000 cycles (7 months)), wide temperature adaptability (-30 to 50 °C) and fast charging ability.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202406683","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The solid polymer electrolytes (SPEs) used in Zn-ion batteries (ZIBs) have low ionic conductivity due to the sluggish dynamics of polymer segments. Thus, only short-range movement of cations is supported, leading to low ionic conductivity and Zn2+ transference (tZn2+). Zn-based supramolecular crystals (ZMCs) have considerable potential for supporting long-distance Zn2+ transport; however, their efficiency in ZIBs has not been explored. The present study developed a ZMC consisting of succinonitrile (SN) and zinc bis(trifluoromethylsulfonyl)imide (Zn(TFSI)2), with a structural formula identified as Zn(TFSI)2SN3. The ZMC has ordered three-dimensional tunnels in the crystalline lattices for ion conduction, providing high ionic conductivities (6.02 × 10-4 S cm-1 at 25 °C and 3.26 × 10-5 S cm-1 at -35 °C) and a high tZn2+ (0.97). We demonstrated that a Zn‖Zn symmetrical battery with ZMCs has long-term cycling stability (1200 h) and a dendrite-free Zn plating/stripping process, even at a high plating areal density of 3 mAh cm-2. The as-fabricated solid-state Zn battery exhibited excellent performance, including high discharge capacity (1.52 mAh cm-2), long-term cycling stability (83.6% capacity retention after 70000 cycles (7 months)), wide temperature adaptability (-30 to 50 °C) and fast charging ability.

用于长循环固体锌电池的基于超分子晶体的快速单离子导体。
Zn 离子电池(ZIBs)中使用的固体聚合物电解质(SPEs)由于聚合物段的动态缓慢,离子电导率较低。因此,只能支持阳离子的短程运动,导致离子电导率和 Zn2+ 转移(tZn2+)较低。锌基超分子晶体(ZMC)在支持长距离 Zn2+ 传输方面具有相当大的潜力;然而,它们在 ZIB 中的效率尚未得到探索。本研究开发了一种由琥珀腈(SN)和双(三氟甲基磺酰基)亚胺锌(Zn(TFSI)2)组成的 ZMC,其结构式确定为 Zn(TFSI)2SN3。ZMC 晶格中有有序的三维隧道,可用于离子传导,具有很高的离子电导率(25 °C 时为 6.02 × 10-4 S cm-1,-35 °C 时为 3.26 × 10-5 S cm-1)和很高的 tZn2+(0.97)。我们证明了含有 ZMC 的 "锌 "锌对称电池具有长期循环稳定性(1200 小时),即使在 3 mAh cm-2 的高电镀等离子密度下,也能实现无枝晶的锌电镀/剥离过程。制备的固态锌电池表现出卓越的性能,包括高放电容量(1.52 mAh cm-2)、长期循环稳定性(7 万次循环(7 个月)后容量保持率为 83.6%)、宽温度适应性(-30 至 50 °C)和快速充电能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信