Marika Avitabile, Ana Aleksov, C Valeria L Giosafatto, Odile Francesca Restaino, Marija Lesjak, Nemanja Živanović, Loredana Mariniello, Nataša Simin
{"title":"Pectin-Based Bioplastics Functionalized with Polyphenols from Rose Oil Distillation Wastewater Exhibit Antioxidant Activity.","authors":"Marika Avitabile, Ana Aleksov, C Valeria L Giosafatto, Odile Francesca Restaino, Marija Lesjak, Nemanja Živanović, Loredana Mariniello, Nataša Simin","doi":"10.1021/acs.biomac.4c00944","DOIUrl":null,"url":null,"abstract":"<p><p>This study explored the potential of rose aqueous extract (RE), a byproduct of rose essential oil extraction, to enhance the properties of biobased food packaging materials. RE contained a high phenolic content (153 mg of GAE/g of dw), rich in hydroxybenzoic acids and flavonols. The antioxidant potential of RE, assessed by DPPH assay, was evaluated (IC<sub>50</sub> = 2.85 μg/mL). Edible pectin films fortified with RE were prepared, and their mechanical, physical, and chemical characteristics were evaluated. RE addition increased the moisture content from 14 to 28%, while moisture uptake remained stable at around 10%. Zeta potential remained below -30 mV, indicating that particle aggregation and particle size decreased with higher RE concentrations. Scanning electron microscopy showed an improved homogeneity of the films. RE retained its antioxidant properties, enhancing the mechanical resistance of the films and offering protection against oxidative damage and UV radiation. These findings suggest the potential of RE in developing functional, eco-friendly food packaging.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00944","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explored the potential of rose aqueous extract (RE), a byproduct of rose essential oil extraction, to enhance the properties of biobased food packaging materials. RE contained a high phenolic content (153 mg of GAE/g of dw), rich in hydroxybenzoic acids and flavonols. The antioxidant potential of RE, assessed by DPPH assay, was evaluated (IC50 = 2.85 μg/mL). Edible pectin films fortified with RE were prepared, and their mechanical, physical, and chemical characteristics were evaluated. RE addition increased the moisture content from 14 to 28%, while moisture uptake remained stable at around 10%. Zeta potential remained below -30 mV, indicating that particle aggregation and particle size decreased with higher RE concentrations. Scanning electron microscopy showed an improved homogeneity of the films. RE retained its antioxidant properties, enhancing the mechanical resistance of the films and offering protection against oxidative damage and UV radiation. These findings suggest the potential of RE in developing functional, eco-friendly food packaging.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.