{"title":"Chronic toxic effects of chloroxylenol exposure on Rana chensinensis: Insights from endochondral ossfication","authors":"Yue Zhang , Zhaoyang Jiang , Xinyi Li","doi":"10.1016/j.aquatox.2024.107140","DOIUrl":null,"url":null,"abstract":"<div><div>Chloroxylenol (para‑chloro-meta-xylenol, PCMX), is a widely used antimicrobial agent and can remain in the aquatic environment. Although toxicity studies related to PCMX on the aquatic animals like zebrafish and <em>Brachionus koreanus</em> have been reported, there are few reports in the ecological risk of amphibians. In this study, the toxicity of different concentration (143, 14.3, 1.43 μg/L) of PCMX treatments on the endochondral ossification and body condition of <em>Rana chensiensis</em> tadpoles was investigated at environmentally relevant concentrations during metamorphosis. The chronic exposure of PCMX decreased bone length and ossification of limbs, caused changes of thyroid gland structure and ossification related gene expression levels. Besides, we found that <em>R. chensiensis</em> developed rheumatoid arthritis. Therefore, these results provided valuable evidence that the ecological risk of PCMX that will negatively affect the body condition, thyroid hormones homeostasis and skeletal development of <em>R. chensiensis</em> tadpoles.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"277 ","pages":"Article 107140"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X24003102","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chloroxylenol (para‑chloro-meta-xylenol, PCMX), is a widely used antimicrobial agent and can remain in the aquatic environment. Although toxicity studies related to PCMX on the aquatic animals like zebrafish and Brachionus koreanus have been reported, there are few reports in the ecological risk of amphibians. In this study, the toxicity of different concentration (143, 14.3, 1.43 μg/L) of PCMX treatments on the endochondral ossification and body condition of Rana chensiensis tadpoles was investigated at environmentally relevant concentrations during metamorphosis. The chronic exposure of PCMX decreased bone length and ossification of limbs, caused changes of thyroid gland structure and ossification related gene expression levels. Besides, we found that R. chensiensis developed rheumatoid arthritis. Therefore, these results provided valuable evidence that the ecological risk of PCMX that will negatively affect the body condition, thyroid hormones homeostasis and skeletal development of R. chensiensis tadpoles.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.