Vigneshwaran Chandrasekaran, Christopher R DeLaney, Cong Tai Trinh, David Parobek, Christopher A Lane, Jian-Xin Zhu, Xiangzhi Li, Huan Zhao, Marshall A Campbell, Laura Martin, Edward F Wyckoff, Andrew C Jones, Matthew M Schneider, John Watt, Michael T Pettes, Sergei A Ivanov, Andrei Piryatinski, David H Dunlap, Han Htoon
{"title":"Correlated excitonic signatures of individual van der Waals NiPS<sub>3</sub> antiferromagnet nanoflakes.","authors":"Vigneshwaran Chandrasekaran, Christopher R DeLaney, Cong Tai Trinh, David Parobek, Christopher A Lane, Jian-Xin Zhu, Xiangzhi Li, Huan Zhao, Marshall A Campbell, Laura Martin, Edward F Wyckoff, Andrew C Jones, Matthew M Schneider, John Watt, Michael T Pettes, Sergei A Ivanov, Andrei Piryatinski, David H Dunlap, Han Htoon","doi":"10.1039/d4nh00390j","DOIUrl":null,"url":null,"abstract":"<p><p>Composite quasi-particles with emergent functionalities in spintronic and quantum information science can be realized in correlated materials due to entangled charge, spin, orbital, and lattice degrees of freedom. Here we show that by reducing the lateral dimension of correlated antiferromagnet NiPS<sub>3</sub> flakes to tens of nanometers and thickness to less than ten nanometers, we can switch-off the bulk spin-orbit entangled exciton in the near-infrared (1.47 eV) and activate visible-range (1.8-2.2 eV) transitions. These ultra-sharp lines (<120 μeV at 4.2 K) share the spin-correlated nature of the bulk exciton by displaying a strong linear polarization below Néel temperature. Furthermore, exciton photoluminescence lineshape analysis indicates a polaronic character <i>VIA</i> coupling with at-least 3 phonon modes and a comb-like Stark effect through discretization of charges in each layer. These findings augment the knowledge on the many-body nature of excitonic quasi-particles in correlated antiferromagnets and also establish the nanoscale correlated antiferromagnets as a promising platform for integrated magneto-optic devices.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nh00390j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Composite quasi-particles with emergent functionalities in spintronic and quantum information science can be realized in correlated materials due to entangled charge, spin, orbital, and lattice degrees of freedom. Here we show that by reducing the lateral dimension of correlated antiferromagnet NiPS3 flakes to tens of nanometers and thickness to less than ten nanometers, we can switch-off the bulk spin-orbit entangled exciton in the near-infrared (1.47 eV) and activate visible-range (1.8-2.2 eV) transitions. These ultra-sharp lines (<120 μeV at 4.2 K) share the spin-correlated nature of the bulk exciton by displaying a strong linear polarization below Néel temperature. Furthermore, exciton photoluminescence lineshape analysis indicates a polaronic character VIA coupling with at-least 3 phonon modes and a comb-like Stark effect through discretization of charges in each layer. These findings augment the knowledge on the many-body nature of excitonic quasi-particles in correlated antiferromagnets and also establish the nanoscale correlated antiferromagnets as a promising platform for integrated magneto-optic devices.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.