Electrostatic Assembly of Gold Nanoclusters in Reverse Emulsion Enabling Nanoassemblies with Tunable Structure and Size for Enhanced NIR-II Fluorescence Imaging.
{"title":"Electrostatic Assembly of Gold Nanoclusters in Reverse Emulsion Enabling Nanoassemblies with Tunable Structure and Size for Enhanced NIR-II Fluorescence Imaging.","authors":"Yufeng Sun, Fei Qu, Rui Geng, Wanyue Xiao, Duohang Bi, Bijin Xiong, Yijing Liu, Jintao Zhu, Xiaoyuan Chen","doi":"10.1021/acsnano.4c10973","DOIUrl":null,"url":null,"abstract":"<p><p>The precise control of the assembly structure and size of gold nanoclusters (AuNCs) can potentially amplify their near-infrared II (NIR-II) fluorescence imaging and targeting properties. However, the conventional electrostatic assembly of AuNCs and charged molecules faces challenges in balancing the inherent electrostatic repulsions among charged units and regulating the diffusion of assembly units. These difficulties limit precise control over assembly size and structure, along with limited options for coassembled molecules, thereby restricting imaging properties and targeting capability. To circumvent this challenge, we developed a reverse emulsion-confined electrostatic assembly method. This technique efficiently constructs AuNC nanoassemblies with diverse coassembled molecules, allowing for the fine-tuning of assembly size and structure, including both core-satellite and homogeneous AuNC nanoassemblies. The development of two distinct nanoassemblies can be partially attributed to the varying diffusive rates of AuNCs or the AuNCs/polymer complex within the fused emulsion droplets. This variance arises from steric hindrances encountered during the emulsion fusion process. Interestingly, core-satellite nanoassemblies exhibit the strongest NIR-II fluorescence enhancement. Finally, the introduction of a hyaluronic acid coating on the surfaces of nanoassemblies with varying sizes enables the nanoprobes to achieve enhanced lymph node imaging through size modulation and macrophage targeting, which are used for surgical navigation to remove lymph node metastases. We envision that this self-assembly strategy can be extended to a wide range of electrostatic assembly systems for the development of multicomponent functional materials.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":"32126-32144"},"PeriodicalIF":15.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c10973","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The precise control of the assembly structure and size of gold nanoclusters (AuNCs) can potentially amplify their near-infrared II (NIR-II) fluorescence imaging and targeting properties. However, the conventional electrostatic assembly of AuNCs and charged molecules faces challenges in balancing the inherent electrostatic repulsions among charged units and regulating the diffusion of assembly units. These difficulties limit precise control over assembly size and structure, along with limited options for coassembled molecules, thereby restricting imaging properties and targeting capability. To circumvent this challenge, we developed a reverse emulsion-confined electrostatic assembly method. This technique efficiently constructs AuNC nanoassemblies with diverse coassembled molecules, allowing for the fine-tuning of assembly size and structure, including both core-satellite and homogeneous AuNC nanoassemblies. The development of two distinct nanoassemblies can be partially attributed to the varying diffusive rates of AuNCs or the AuNCs/polymer complex within the fused emulsion droplets. This variance arises from steric hindrances encountered during the emulsion fusion process. Interestingly, core-satellite nanoassemblies exhibit the strongest NIR-II fluorescence enhancement. Finally, the introduction of a hyaluronic acid coating on the surfaces of nanoassemblies with varying sizes enables the nanoprobes to achieve enhanced lymph node imaging through size modulation and macrophage targeting, which are used for surgical navigation to remove lymph node metastases. We envision that this self-assembly strategy can be extended to a wide range of electrostatic assembly systems for the development of multicomponent functional materials.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.