Transtympanic delivery of V2O5 nanowires with a tympanic-membrane penetrating peptide.

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Sophie S Liu, Jiayan Lang, Shuxian Wen, Pengyu Chen, Haonian Shu, Simon Shindler, Wenjing Tang, Xiaojing Ma, Max D Serota, Rong Yang
{"title":"Transtympanic delivery of V<sub>2</sub>O<sub>5</sub> nanowires with a tympanic-membrane penetrating peptide.","authors":"Sophie S Liu, Jiayan Lang, Shuxian Wen, Pengyu Chen, Haonian Shu, Simon Shindler, Wenjing Tang, Xiaojing Ma, Max D Serota, Rong Yang","doi":"10.1039/d4bm00983e","DOIUrl":null,"url":null,"abstract":"<p><p>Otitis media is a prevalent pediatric condition. Local delivery of antimicrobial agents to treat otitis media is hindered by the low permeability of the stratum corneum layer in the tympanic membrane. While nanozymes, often inorganic nanoparticles, have been developed to cure otitis media in an antibiotic-free manner in a chinchilla animal model, the tympanic membrane creates an impenetrable barrier that prevents the local and non-invasive delivery of nanozymes. Here, we use a newly developed vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>) nanowire as an example, which catalyzes the metabolic products of an otitis media pathogen (<i>Streptococcus pneumoniae</i>) into antiseptics, to explore the transtympanic delivery strategies for antimicrobial nanozymes. V<sub>2</sub>O<sub>5</sub> nanowires with smaller dimensions (<300 nm in length) were synthesized by optimizing the synthesis conditions. To enhance penetrations across intact tympanic membranes, the nanowire was mixed or surface-modified with a trans-tympanic peptide, TMT3. The peptide-modified nanowires were characterized for their physical properties, catalytic activities, and antimicrobial activities. The cytotoxicity profile and permeation across <i>ex vivo</i> tympanic membrane samples were analyzed for the mixed and surface-modified nanozyme formulations.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533110/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm00983e","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Otitis media is a prevalent pediatric condition. Local delivery of antimicrobial agents to treat otitis media is hindered by the low permeability of the stratum corneum layer in the tympanic membrane. While nanozymes, often inorganic nanoparticles, have been developed to cure otitis media in an antibiotic-free manner in a chinchilla animal model, the tympanic membrane creates an impenetrable barrier that prevents the local and non-invasive delivery of nanozymes. Here, we use a newly developed vanadium pentoxide (V2O5) nanowire as an example, which catalyzes the metabolic products of an otitis media pathogen (Streptococcus pneumoniae) into antiseptics, to explore the transtympanic delivery strategies for antimicrobial nanozymes. V2O5 nanowires with smaller dimensions (<300 nm in length) were synthesized by optimizing the synthesis conditions. To enhance penetrations across intact tympanic membranes, the nanowire was mixed or surface-modified with a trans-tympanic peptide, TMT3. The peptide-modified nanowires were characterized for their physical properties, catalytic activities, and antimicrobial activities. The cytotoxicity profile and permeation across ex vivo tympanic membrane samples were analyzed for the mixed and surface-modified nanozyme formulations.

用一种鼓膜穿透肽经鼓膜输送 V2O5 纳米线。
中耳炎是一种常见的儿科疾病。由于鼓膜角质层的低渗透性,治疗中耳炎的抗菌剂的局部输送受到阻碍。虽然纳米酶(通常是无机纳米颗粒)已被开发出来,可在龙猫动物模型中以不含抗生素的方式治疗中耳炎,但鼓膜形成了一道难以逾越的屏障,阻碍了纳米酶的局部和非侵入性输送。在此,我们以新开发的五氧化二钒(V2O5)纳米线为例,探讨经鼓膜输送抗菌纳米酶的策略,该纳米线可将中耳炎病原体(肺炎链球菌)的代谢产物催化为抗菌剂。分析了尺寸较小的 V2O5 纳米线(体内外鼓膜样本),以及混合型和表面修饰型纳米酶制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信