{"title":"Rapid detection of Hg<sup>2+</sup> in an ON-OFF-ON process using N doped carbon dots.","authors":"Ananya Dutta, Sonit Kumar Gogoi","doi":"10.1039/d4ay01210k","DOIUrl":null,"url":null,"abstract":"<p><p>Contamination of ground water with pollutants released from various anthropogenic activities is a major concern due to its adverse effects on the environment and human health. Rapid and efficient detection of such pollutants is the first step toward remediation of the problem. Herein we report a two-point fluorescence turn OFF-ON detection method for Hg<sup>2+</sup> ions using nitrogen doped carbon dots (NCDs). The NCDs obtained through solvothermal treatment of ammonium citrate tribasic in DMF at 190 °C for four hours exhibited a quantum yield of 9.67%. Hg<sup>2+</sup> detection is demonstrated in two steps, first the quenching of the fluorescence of NCDs by Hg<sup>2+</sup> and second the fluorescence recovery upon addition of ascorbic acid from different sources. A rapid filter paper-based detection device is demonstrated based on the principles developed.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ay01210k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Contamination of ground water with pollutants released from various anthropogenic activities is a major concern due to its adverse effects on the environment and human health. Rapid and efficient detection of such pollutants is the first step toward remediation of the problem. Herein we report a two-point fluorescence turn OFF-ON detection method for Hg2+ ions using nitrogen doped carbon dots (NCDs). The NCDs obtained through solvothermal treatment of ammonium citrate tribasic in DMF at 190 °C for four hours exhibited a quantum yield of 9.67%. Hg2+ detection is demonstrated in two steps, first the quenching of the fluorescence of NCDs by Hg2+ and second the fluorescence recovery upon addition of ascorbic acid from different sources. A rapid filter paper-based detection device is demonstrated based on the principles developed.