Liam Davison-Gates, Andrew V Ewing, Don Clark, Fiona C Clarke
{"title":"High-throughput optimisations for 3D chemical imaging of pharmaceutical solid oral dosage forms.","authors":"Liam Davison-Gates, Andrew V Ewing, Don Clark, Fiona C Clarke","doi":"10.1039/d4ay01806k","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical imaging of pharmaceutical solid oral dosage forms is a key technique for quality assurance and issue diagnosis. This technique can be further augmented using 3D chemical imaging <i>via</i> serial sections and image stacking. However, the additional collection time this entails means that 3D imaging is utilised for a very niche set of applications. Previous attempts have been made to optimize the process but have often compromised the quality of the resulting chemical images to achieve the gains in process time. In this study, several optimisation strategies are employed to increase the efficiency of 3D chemical image collection without sacrificing the quality of the final chemical images. The use of automated microscope macros and a kinematic mounting system allowed for rapid sample processing and efficient utilisation of equipment time. The automated macros allow the Raman microscope to collect mapping data continuously from multiple samples without the need for operator intervention steps. The kinematic mounting system allows rapid and accurate sample transfer and positioning between instruments. These optimisations resulted in a three times speed increase in collection time while keeping the same signal-to-noise ratio of the resulting chemical images. These optimisations will allow the rapid collection of statistically robust 3D chemical image data within a set time frame that is more amenable to an industrial workflow.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ay01806k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical imaging of pharmaceutical solid oral dosage forms is a key technique for quality assurance and issue diagnosis. This technique can be further augmented using 3D chemical imaging via serial sections and image stacking. However, the additional collection time this entails means that 3D imaging is utilised for a very niche set of applications. Previous attempts have been made to optimize the process but have often compromised the quality of the resulting chemical images to achieve the gains in process time. In this study, several optimisation strategies are employed to increase the efficiency of 3D chemical image collection without sacrificing the quality of the final chemical images. The use of automated microscope macros and a kinematic mounting system allowed for rapid sample processing and efficient utilisation of equipment time. The automated macros allow the Raman microscope to collect mapping data continuously from multiple samples without the need for operator intervention steps. The kinematic mounting system allows rapid and accurate sample transfer and positioning between instruments. These optimisations resulted in a three times speed increase in collection time while keeping the same signal-to-noise ratio of the resulting chemical images. These optimisations will allow the rapid collection of statistically robust 3D chemical image data within a set time frame that is more amenable to an industrial workflow.