Biomimetic Superhydrophobic Surfaces by Nanoarchitectonics with Natural Sunflower Pollen.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-11-03 DOI:10.1002/smll.202409136
Jian Li, Jingyu Deng, Chenchen Zhou, Jueying Yang, Sungmin Shin, Bernard P Binks, Nam-Joon Cho
{"title":"Biomimetic Superhydrophobic Surfaces by Nanoarchitectonics with Natural Sunflower Pollen.","authors":"Jian Li, Jingyu Deng, Chenchen Zhou, Jueying Yang, Sungmin Shin, Bernard P Binks, Nam-Joon Cho","doi":"10.1002/smll.202409136","DOIUrl":null,"url":null,"abstract":"<p><p>Superhydrophobic surfaces, known for their water-repellent, and self-cleaning properties, are widely used in various applications. These advanced functional surfaces exhibit high contact angles (>150°), achieved through low surface energy chemistries and hierarchical roughness. Natural sunflower pollen is micron-sized spherical particles with nano-sized spikes on the surface. This study engineered superhydrophobic coatings using the unique hierarchical structure of sunflower pollen and low surface energy additives like polydimethylsiloxane (PDMS) and silane additives such as 1H,1H,2H,2H-perfluorooctyltrichlorosilane (FTS), octadecyltrichlorosilane (OTS) and dichlorodimethylsilane (DCDMS). The pollen content significantly modulates surface structure, roughness, and water contact angle. Higher pollen content enhances roughness and water repellency by creating micro-nano hierarchical structures. Pollen-PDMS-FTS and Pollen-PDMS coatings demonstrated the highest water contact angles (165 ± 2° and 163 ± 3°, respectively) and lowest sliding angles (4.5 ± 1° and 7.6 ± 2.6°, respectively), achieving a \"lotus effect.\" Conversely, Pollen-PDMS-OTS or Pollen-PDMS-DCDMS coatings resulted in high sliding angles and water adhesion, producing a \"rose petal effect.\" These \"lotus effect\" coatings are effectively applied in self-cleaning and water displacement in oil pipelines on hilly terrain. This study provides insights into the interplay between hierarchical structure and surface-free energy for designing superhydrophobic surfaces tailored for specific applications.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202409136","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Superhydrophobic surfaces, known for their water-repellent, and self-cleaning properties, are widely used in various applications. These advanced functional surfaces exhibit high contact angles (>150°), achieved through low surface energy chemistries and hierarchical roughness. Natural sunflower pollen is micron-sized spherical particles with nano-sized spikes on the surface. This study engineered superhydrophobic coatings using the unique hierarchical structure of sunflower pollen and low surface energy additives like polydimethylsiloxane (PDMS) and silane additives such as 1H,1H,2H,2H-perfluorooctyltrichlorosilane (FTS), octadecyltrichlorosilane (OTS) and dichlorodimethylsilane (DCDMS). The pollen content significantly modulates surface structure, roughness, and water contact angle. Higher pollen content enhances roughness and water repellency by creating micro-nano hierarchical structures. Pollen-PDMS-FTS and Pollen-PDMS coatings demonstrated the highest water contact angles (165 ± 2° and 163 ± 3°, respectively) and lowest sliding angles (4.5 ± 1° and 7.6 ± 2.6°, respectively), achieving a "lotus effect." Conversely, Pollen-PDMS-OTS or Pollen-PDMS-DCDMS coatings resulted in high sliding angles and water adhesion, producing a "rose petal effect." These "lotus effect" coatings are effectively applied in self-cleaning and water displacement in oil pipelines on hilly terrain. This study provides insights into the interplay between hierarchical structure and surface-free energy for designing superhydrophobic surfaces tailored for specific applications.

利用天然向日葵花粉的纳米结构设计仿生超疏水表面。
超疏水表面以其拒水和自清洁特性而闻名,被广泛应用于各种领域。这些先进的功能表面通过低表面能化学成分和分层粗糙度实现了高接触角(大于 150°)。天然向日葵花粉是微米大小的球形颗粒,表面有纳米级的尖刺。本研究利用向日葵花粉独特的分层结构和低表面能添加剂(如聚二甲基硅氧烷 (PDMS))以及硅烷添加剂(如 1H,1H,2H,2H-全氟辛基三氯硅烷 (FTS)、十八烷基三氯硅烷 (OTS) 和二氯二甲基硅烷 (DCDMS))设计了超疏水涂层。花粉含量会明显改变表面结构、粗糙度和水接触角。花粉含量越高,表面的粗糙度和拒水性就越好,因为花粉能形成微纳米分层结构。花粉-PDMS-FTS 和花粉-PDMS 涂层表现出最高的水接触角(分别为 165 ± 2° 和 163 ± 3°)和最低的滑动角(分别为 4.5 ± 1° 和 7.6 ± 2.6°),实现了 "莲花效应"。相反,花粉-PDMS-OTS 或花粉-PDMS-DCDMS 涂层则具有较高的滑动角和水附着力,产生了 "玫瑰花瓣效应"。这些 "莲花效应 "涂层可有效地用于丘陵地形石油管道的自清洁和水置换。这项研究为设计适合特定应用的超疏水表面提供了层次结构和表面自由能之间相互作用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信