Ziqi Shen, Xiaohua Wang, Li Lu, Runkong Wang, Danni Hu, Ziyan Fan, Liyang Zhu, Ruixue Zhong, Mingquan Wu, Xu Zhou, Xi Cao
{"title":"Bilirubin-Modified Chondroitin Sulfate-Mediated Multifunctional Liposomes Ameliorate Acute Kidney Injury by Inducing Mitophagy and Regulating Macrophage Polarization.","authors":"Ziqi Shen, Xiaohua Wang, Li Lu, Runkong Wang, Danni Hu, Ziyan Fan, Liyang Zhu, Ruixue Zhong, Mingquan Wu, Xu Zhou, Xi Cao","doi":"10.1021/acsami.4c14169","DOIUrl":null,"url":null,"abstract":"<p><p>Acute kidney injury (AKI) is a dynamic process associated with inflammation, oxidative stress, and lipid peroxidation, in which mitochondrial mitophagy and macrophage polarization play a critical role in the pathophysiology. Based on the expression of the CD44 receptor on renal tubular epithelial cells (RTECs) and activated M1 macrophages being abnormally increased, accompanied by up-regulation of reactive oxygen species (ROS) during AKI, the conjugates of bilirubin (BR), an endogenous antioxidant which has the property of anti-inflammation, and chondroitin sulfate (CS) with CD44-targeting property could be a promising therapeutic carrier. In this study, we develop a CD44-targeted/ROS-responsive CS-BR-mediated multifunctional liposome loading celastrol (CS-BR@CLT) for the targeted therapy of AKI. CS-BR@CLT is shown to selectively accumulate in AKI mouse kidneys via targeting of CD44 receptors. Treatment with CS-BR@CLT significantly ameliorates acute kidney injury caused by ischemia-reperfusion and protects renal function. Mechanistically, CS-BR@CLT inhibits apoptosis, protects mitochondria, promotes autophagy, regulates macrophage polarization, and alleviates interstitial inflammation. Overall, our study demonstrates that CS-BR@CLT could be a promising strategy to ameliorate acute kidney injury.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c14169","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute kidney injury (AKI) is a dynamic process associated with inflammation, oxidative stress, and lipid peroxidation, in which mitochondrial mitophagy and macrophage polarization play a critical role in the pathophysiology. Based on the expression of the CD44 receptor on renal tubular epithelial cells (RTECs) and activated M1 macrophages being abnormally increased, accompanied by up-regulation of reactive oxygen species (ROS) during AKI, the conjugates of bilirubin (BR), an endogenous antioxidant which has the property of anti-inflammation, and chondroitin sulfate (CS) with CD44-targeting property could be a promising therapeutic carrier. In this study, we develop a CD44-targeted/ROS-responsive CS-BR-mediated multifunctional liposome loading celastrol (CS-BR@CLT) for the targeted therapy of AKI. CS-BR@CLT is shown to selectively accumulate in AKI mouse kidneys via targeting of CD44 receptors. Treatment with CS-BR@CLT significantly ameliorates acute kidney injury caused by ischemia-reperfusion and protects renal function. Mechanistically, CS-BR@CLT inhibits apoptosis, protects mitochondria, promotes autophagy, regulates macrophage polarization, and alleviates interstitial inflammation. Overall, our study demonstrates that CS-BR@CLT could be a promising strategy to ameliorate acute kidney injury.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.