Jie-jing Chen , Qing-feng Liu , Wei-liang Jin , Jin Xia
{"title":"Experiment and simulation on the coupled effects of calcium leaching and chloride transport in concrete under hydraulic pressure","authors":"Jie-jing Chen , Qing-feng Liu , Wei-liang Jin , Jin Xia","doi":"10.1016/j.cemconcomp.2024.105834","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the coupled effect of calcium leaching and chloride erosion on concrete subjected to hydraulic pressure by combining experiments and numerical simulations. Several tests including titration, pH, XRD, TG, MIP, and SEM-EDS were employed to analyze chloride concentration, pH value, solid phase compositions, and microstructure of concrete under hydraulic pressure. Concurrently, a model based on the physicochemical interactions between the pore solution and the hydration products was constructed to elucidate the process of calcium leaching and multi-ion transport. The experimental and simulation results reveal that hydraulic pressure accelerates calcium leaching in concrete, leading to a maximum porosity that reaches 1.5 times the initial porosity after a year. In addition, both the pH value and chloride binding capacity in the zone close to the exposure surface decrease. The enrichment of Ca<sup>2+</sup> and OH<sup>−</sup> occurs at a specific depth within concrete during the calcium leaching process, and over time, this enrichment effect grows increasingly significant. Along the depth within the concrete, a transient increase in chloride binding capacity can be observed, which can be attributed to OH<sup>−</sup> and Ca<sup>2+</sup> enrichment.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"155 ","pages":"Article 105834"},"PeriodicalIF":10.8000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946524004074","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the coupled effect of calcium leaching and chloride erosion on concrete subjected to hydraulic pressure by combining experiments and numerical simulations. Several tests including titration, pH, XRD, TG, MIP, and SEM-EDS were employed to analyze chloride concentration, pH value, solid phase compositions, and microstructure of concrete under hydraulic pressure. Concurrently, a model based on the physicochemical interactions between the pore solution and the hydration products was constructed to elucidate the process of calcium leaching and multi-ion transport. The experimental and simulation results reveal that hydraulic pressure accelerates calcium leaching in concrete, leading to a maximum porosity that reaches 1.5 times the initial porosity after a year. In addition, both the pH value and chloride binding capacity in the zone close to the exposure surface decrease. The enrichment of Ca2+ and OH− occurs at a specific depth within concrete during the calcium leaching process, and over time, this enrichment effect grows increasingly significant. Along the depth within the concrete, a transient increase in chloride binding capacity can be observed, which can be attributed to OH− and Ca2+ enrichment.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.