Zhichen Meng , Weifeng Qian , Bingkun Ning , Shuang Wang , Yongnan Chen , Yong Zhang , Nan Wang , Yanchao Li , Wen Zhang , Guangrui Gao
{"title":"High-temperature crack resistance of yttria-stabilized zirconia coatings enhanced by interfacial stress transfer","authors":"Zhichen Meng , Weifeng Qian , Bingkun Ning , Shuang Wang , Yongnan Chen , Yong Zhang , Nan Wang , Yanchao Li , Wen Zhang , Guangrui Gao","doi":"10.1016/j.apsusc.2024.161688","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the high-temperature crack resistance properties of yttria-stabilized zirconia (YSZ) coatings prepared in electrolytes with varying amounts of Y<sup>3+</sup> addition, within a temperature range from 800 °C to 1000 °C. The flexibility-enhanced YSZ coating enabled by obtaining tetragonal zirconia (t-ZrO<sub>2</sub>) and cubic zirconia (c-ZrO<sub>2</sub>) coherent interfaces with high stress transfer efficiency, which is achieved by adjusting the phase composition in ZrO<sub>2</sub> coatings. The high-quality toughened YSZ coating with 59 % lower crack density compared with traditional ZrO<sub>2</sub> coating. This phenomenon is attributed to the c-ZrO<sub>2</sub>/t-ZrO<sub>2</sub> coherent interface alleviates interfacial deformation at high temperatures and maintains a good stress transfer capability through its stable structure, which helps to disperse the thermal stress within the coating and inhibits crack propagation. This work provides a straightforward strategy for tailoring ZrO<sub>2</sub> coatings crack propagation resistance property at high temperatures by interface enhancement.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"682 ","pages":"Article 161688"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433224024048","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the high-temperature crack resistance properties of yttria-stabilized zirconia (YSZ) coatings prepared in electrolytes with varying amounts of Y3+ addition, within a temperature range from 800 °C to 1000 °C. The flexibility-enhanced YSZ coating enabled by obtaining tetragonal zirconia (t-ZrO2) and cubic zirconia (c-ZrO2) coherent interfaces with high stress transfer efficiency, which is achieved by adjusting the phase composition in ZrO2 coatings. The high-quality toughened YSZ coating with 59 % lower crack density compared with traditional ZrO2 coating. This phenomenon is attributed to the c-ZrO2/t-ZrO2 coherent interface alleviates interfacial deformation at high temperatures and maintains a good stress transfer capability through its stable structure, which helps to disperse the thermal stress within the coating and inhibits crack propagation. This work provides a straightforward strategy for tailoring ZrO2 coatings crack propagation resistance property at high temperatures by interface enhancement.
期刊介绍:
Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.