Yinglin Tian, Axel Kleidon, Corey Lesk, Sha Zhou, Xiangzhong Luo, Sarosh Alam Ghausi, Guangqian Wang, Deyu Zhong, Jakob Zscheischler
{"title":"Characterizing heatwaves based on land surface energy budget","authors":"Yinglin Tian, Axel Kleidon, Corey Lesk, Sha Zhou, Xiangzhong Luo, Sarosh Alam Ghausi, Guangqian Wang, Deyu Zhong, Jakob Zscheischler","doi":"10.1038/s43247-024-01784-y","DOIUrl":null,"url":null,"abstract":"Heat extremes pose pronounced threats to social-ecological systems and are projected to become more intense, frequent, and longer. However, the mechanisms driving heatwaves vary across heatwave types and are not yet fully understood. Here we decompose perturbations in the surface energy budget to categorize global heatwave-days into four distinct types: sunny–humid (38%), sunny-dry (26%), advective (18%), and adiabatic (18%). Notably, sunny-dry heatwave-days decrease net ecosystem carbon uptake by 0.09 gC m−2 day−1 over harvested areas, while advective heatwave-days increase the thermal stress index by 6.20 K in populated regions. In addition, from 2000 to 2020, sunny-dry heatwaves have shown the most widespread increase compared to 1979 to 1999, with 67% of terrestrial areas experiencing a doubling in their occurrence. Our findings highlight the importance of classifying heatwave-days based on their underlying mechanisms, as this can enhance our understanding of heatwaves and improve strategies for heat adaptation. Global heatwave days can be classified into sunny-humid, sunny-dry, advective, and adiabatic types, with sunny-dry days showing the most widespread increase from 2000 to 2020, causing carbon uptake reduction, while advective days increase human thermal stress, according to surface energy budget perturbations analysis.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-9"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01784-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01784-y","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Heat extremes pose pronounced threats to social-ecological systems and are projected to become more intense, frequent, and longer. However, the mechanisms driving heatwaves vary across heatwave types and are not yet fully understood. Here we decompose perturbations in the surface energy budget to categorize global heatwave-days into four distinct types: sunny–humid (38%), sunny-dry (26%), advective (18%), and adiabatic (18%). Notably, sunny-dry heatwave-days decrease net ecosystem carbon uptake by 0.09 gC m−2 day−1 over harvested areas, while advective heatwave-days increase the thermal stress index by 6.20 K in populated regions. In addition, from 2000 to 2020, sunny-dry heatwaves have shown the most widespread increase compared to 1979 to 1999, with 67% of terrestrial areas experiencing a doubling in their occurrence. Our findings highlight the importance of classifying heatwave-days based on their underlying mechanisms, as this can enhance our understanding of heatwaves and improve strategies for heat adaptation. Global heatwave days can be classified into sunny-humid, sunny-dry, advective, and adiabatic types, with sunny-dry days showing the most widespread increase from 2000 to 2020, causing carbon uptake reduction, while advective days increase human thermal stress, according to surface energy budget perturbations analysis.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.