Z. A. Temerdashev, E. G. Ryadno, L. V. Vasileva, A. G. Abakumov, A. M. Vasilev
{"title":"Determination of Zinc in Gas Cleaning Dust Emissions from Electrometallurgical Production","authors":"Z. A. Temerdashev, E. G. Ryadno, L. V. Vasileva, A. G. Abakumov, A. M. Vasilev","doi":"10.1134/S1061934824700953","DOIUrl":null,"url":null,"abstract":"<p>The study focuses on the specific features of zinc determination in dust emissions from gas cleaning systems used in an electrometallurgical plant used to process scrap metal. X-ray powder diffraction, energy-dispersive X-ray fluorescence spectrometry (EDXRF), and inductively coupled plasma atomic emission spectrometry (ICP–AES) were employed to identify the elemental and phase compositions of the dust emissions, including zinc oxide, zinc ferrite, halite, sylvite, and magnetite. Based on these compositions, an analytical procedure was developed. The proposed rapid energy-dispersive X-ray fluorescence spectrometry method for zinc determination in dust emissions involves constructing a calibration curve with matrix effect corrections. The relative deviation for zinc determination using EDXRF with matrix correction was 2.1%, while for ICP–AES it was 2.5%. The zinc determination method was tested on real samples of gas cleaning dust emissions.</p>","PeriodicalId":606,"journal":{"name":"Journal of Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061934824700953","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The study focuses on the specific features of zinc determination in dust emissions from gas cleaning systems used in an electrometallurgical plant used to process scrap metal. X-ray powder diffraction, energy-dispersive X-ray fluorescence spectrometry (EDXRF), and inductively coupled plasma atomic emission spectrometry (ICP–AES) were employed to identify the elemental and phase compositions of the dust emissions, including zinc oxide, zinc ferrite, halite, sylvite, and magnetite. Based on these compositions, an analytical procedure was developed. The proposed rapid energy-dispersive X-ray fluorescence spectrometry method for zinc determination in dust emissions involves constructing a calibration curve with matrix effect corrections. The relative deviation for zinc determination using EDXRF with matrix correction was 2.1%, while for ICP–AES it was 2.5%. The zinc determination method was tested on real samples of gas cleaning dust emissions.
期刊介绍:
The Journal of Analytical Chemistry is an international peer reviewed journal that covers theoretical and applied aspects of analytical chemistry; it informs the reader about new achievements in analytical methods, instruments and reagents. Ample space is devoted to problems arising in the analysis of vital media such as water and air. Consideration is given to the detection and determination of metal ions, anions, and various organic substances. The journal welcomes manuscripts from all countries in the English or Russian language.