Generalized Bloch Theorem and Band-Structure Topology

IF 1.4 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Yu. B. Kudasov
{"title":"Generalized Bloch Theorem and Band-Structure Topology","authors":"Yu. B. Kudasov","doi":"10.1134/S0021364024602574","DOIUrl":null,"url":null,"abstract":"<p>Dispersion relations in a metal with a commensurate helical magnetic order are considered in the framework of one- and two-dimensional tight-binding models. The generalized Bloch theorem for translations combined with spin rotations, together with the Born–Karman periodic boundary conditions, leads to the appearance of multisheet dispersion curves (surfaces). It is demonstrated that the resulting band structure is topologically nontrivial, which can lead to a spin textured Fermi surface and cause transport anomalies.</p>","PeriodicalId":604,"journal":{"name":"JETP Letters","volume":"120 6","pages":"416 - 420"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S0021364024602574.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JETP Letters","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0021364024602574","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dispersion relations in a metal with a commensurate helical magnetic order are considered in the framework of one- and two-dimensional tight-binding models. The generalized Bloch theorem for translations combined with spin rotations, together with the Born–Karman periodic boundary conditions, leads to the appearance of multisheet dispersion curves (surfaces). It is demonstrated that the resulting band structure is topologically nontrivial, which can lead to a spin textured Fermi surface and cause transport anomalies.

广义布洛赫定理和带状结构拓扑学
在一维和二维紧密束缚模型的框架内,研究了具有相称螺旋磁序的金属中的弥散关系。平移的广义布洛赫定理与自旋旋转相结合,再加上博恩-卡曼周期性边界条件,导致了多片状频散曲线(表面)的出现。研究表明,由此产生的带状结构在拓扑上是非琐碎的,这可能导致自旋纹理费米面,并引起输运异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JETP Letters
JETP Letters 物理-物理:综合
CiteScore
2.40
自引率
30.80%
发文量
164
审稿时长
3-6 weeks
期刊介绍: All topics of experimental and theoretical physics including gravitation, field theory, elementary particles and nuclei, plasma, nonlinear phenomena, condensed matter, superconductivity, superfluidity, lasers, and surfaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信