Determination of 3-(4-Hydroxyphenyl)lactic Acid by an Amperometric Sensor with Molecularly Imprinted Polymers

IF 1 4区 化学 Q4 CHEMISTRY, ANALYTICAL
A. O. Korovkina, Vu Hoang Yen, N. V. Beloborodova, A. Yu. Vybornyi, A. N. Zyablov
{"title":"Determination of 3-(4-Hydroxyphenyl)lactic Acid by an Amperometric Sensor with Molecularly Imprinted Polymers","authors":"A. O. Korovkina,&nbsp;Vu Hoang Yen,&nbsp;N. V. Beloborodova,&nbsp;A. Yu. Vybornyi,&nbsp;A. N. Zyablov","doi":"10.1134/S1061934824701065","DOIUrl":null,"url":null,"abstract":"<p>Sepsis is a life-threatening organ dysfunction caused by a disorder in the regulation of a body’s response to infection. If sepsis is not recognized at an early stage and treatment is not started, it can lead to septic shock, multiple organ failure, and death. Sepsis diagnostics, traditionally based on the clinical picture and the detection of etiologically significant microorganisms in the blood and foci, has been improved in recent years through the search for and the implementation of various biomarkers. One of promising sepsis biomarkers is 3-(4-hydroxyphenyl)lactic acid (4-HPLA). In this work, an amperometric sensor modified with a molecularly imprinted polymer (MIP) of hydroxyphenyllactic acid is developed, and a fundamental possibility of determining 4-HPLA in model aqueous solutions using this sensor is demonstrated. Molecularly imprinted polymers are widely used in substance separation processes and in the fabrication of selective sensors. Among a variety of selective materials, polyimides are of particular interest. In this regard, MIP sensors with imprints of 4-hydroxyphenyllactic acid were developed based on a copolymer of 1,2,4,5-benzenetracarboxylic acid with 4,4'-diaminodiphenyl oxide. The sensors are obtained in two stages (stage I at 80°C, stage II at 180°C) using the non-covalent imprinting method. The high selectivity of the MIP sensors with respect to the target molecules was established. The analytical range of the acid is 0.0002−0.2 mg/L. The experimentally established limit of detection for 4-hydroxyphenyllactic acid is 4.5 × 10<sup>–5</sup> mg/L.</p>","PeriodicalId":606,"journal":{"name":"Journal of Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061934824701065","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sepsis is a life-threatening organ dysfunction caused by a disorder in the regulation of a body’s response to infection. If sepsis is not recognized at an early stage and treatment is not started, it can lead to septic shock, multiple organ failure, and death. Sepsis diagnostics, traditionally based on the clinical picture and the detection of etiologically significant microorganisms in the blood and foci, has been improved in recent years through the search for and the implementation of various biomarkers. One of promising sepsis biomarkers is 3-(4-hydroxyphenyl)lactic acid (4-HPLA). In this work, an amperometric sensor modified with a molecularly imprinted polymer (MIP) of hydroxyphenyllactic acid is developed, and a fundamental possibility of determining 4-HPLA in model aqueous solutions using this sensor is demonstrated. Molecularly imprinted polymers are widely used in substance separation processes and in the fabrication of selective sensors. Among a variety of selective materials, polyimides are of particular interest. In this regard, MIP sensors with imprints of 4-hydroxyphenyllactic acid were developed based on a copolymer of 1,2,4,5-benzenetracarboxylic acid with 4,4'-diaminodiphenyl oxide. The sensors are obtained in two stages (stage I at 80°C, stage II at 180°C) using the non-covalent imprinting method. The high selectivity of the MIP sensors with respect to the target molecules was established. The analytical range of the acid is 0.0002−0.2 mg/L. The experimentally established limit of detection for 4-hydroxyphenyllactic acid is 4.5 × 10–5 mg/L.

Abstract Image

用分子印迹聚合物安培传感器测定 3-(4-羟基苯基)乳酸
败血症是一种危及生命的器官功能障碍,由人体对感染反应的调节失调引起。如果败血症没有在早期被发现,也没有开始治疗,就会导致脓毒性休克、多器官衰竭和死亡。脓毒症诊断传统上以临床表现和检测血液及病灶中的病原微生物为基础,近年来通过寻找和使用各种生物标记物得到了改善。3-(4-羟基苯基)乳酸(4-HPLA)是一种很有前途的败血症生物标志物。本研究开发了一种用羟苯基乳酸的分子印迹聚合物(MIP)改性的安培传感器,并展示了使用这种传感器测定模型水溶液中 4-HPLA 的基本可能性。分子印迹聚合物广泛应用于物质分离过程和选择性传感器的制造。在各种选择性材料中,聚酰亚胺尤其引人关注。在这方面,基于 1,2,4,5- 苯四羧酸与 4,4'- 二氨基二苯氧化物的共聚物,开发出了带有 4- 羟基苯乙酸印迹的 MIP 传感器。传感器采用非共价压印法分两个阶段获得(第一阶段在 80°C,第二阶段在 180°C)。MIP 传感器对目标分子具有很高的选择性。酸的分析范围为 0.0002-0.2 mg/L。实验确定的 4-hydroxyphenyllactic acid 检测限为 4.5 × 10-5 mg/L。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Analytical Chemistry
Journal of Analytical Chemistry 化学-分析化学
CiteScore
2.10
自引率
9.10%
发文量
146
审稿时长
13 months
期刊介绍: The Journal of Analytical Chemistry is an international peer reviewed journal that covers theoretical and applied aspects of analytical chemistry; it informs the reader about new achievements in analytical methods, instruments and reagents. Ample space is devoted to problems arising in the analysis of vital media such as water and air. Consideration is given to the detection and determination of metal ions, anions, and various organic substances. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信