Ultra-thin order–disorder CeO2 nanobelts as the non-carbon support of the PtCu catalyst towards methanol oxidation and oxygen reduction reactions†

Han Zhi, Boda Dong, Xingxing Guo and Feng Xu
{"title":"Ultra-thin order–disorder CeO2 nanobelts as the non-carbon support of the PtCu catalyst towards methanol oxidation and oxygen reduction reactions†","authors":"Han Zhi, Boda Dong, Xingxing Guo and Feng Xu","doi":"10.1039/D4SU00449C","DOIUrl":null,"url":null,"abstract":"<p >The use of carbon supports in direct methanol fuel cells easily leads to the shedding and poisoning of the Pt catalyst and hence the decrease of catalytic activity. Non-carbon materials have been studied to enhance the metal–support interaction and the catalytic performance. Herein, we explored ultra-thin CeO<small><sub>2</sub></small> nanobelts (2D-CeO<small><sub>2</sub></small>) with the order–disorder structure as the support of the PtCu catalyst. PtCu/2D-CeO<small><sub>2</sub></small> shows the highest current density of 37.24 mA cm<small><sup>−2</sup></small> toward the methanol oxidation reaction (MOR), and a limiting current density of 4.82 mA cm<small><sup>−2</sup></small> towards the oxygen reduction reaction. The order–disorder structure of 2D-CeO<small><sub>2</sub></small> generates a high volume of oxygen vacancies and strong metal–support interaction. The Pt<small><sup>0</sup></small> proportion of PtCu/2D-CeO<small><sub>2</sub></small> is much higher than that of PtCu/C which increases the active sites. The d-band center of PtCu is lowered which facilitates the adsorption and dissociation of reactants, thereby dramatically boosting the electro-catalytic performance.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 11","pages":" 3456-3463"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00449c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00449c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of carbon supports in direct methanol fuel cells easily leads to the shedding and poisoning of the Pt catalyst and hence the decrease of catalytic activity. Non-carbon materials have been studied to enhance the metal–support interaction and the catalytic performance. Herein, we explored ultra-thin CeO2 nanobelts (2D-CeO2) with the order–disorder structure as the support of the PtCu catalyst. PtCu/2D-CeO2 shows the highest current density of 37.24 mA cm−2 toward the methanol oxidation reaction (MOR), and a limiting current density of 4.82 mA cm−2 towards the oxygen reduction reaction. The order–disorder structure of 2D-CeO2 generates a high volume of oxygen vacancies and strong metal–support interaction. The Pt0 proportion of PtCu/2D-CeO2 is much higher than that of PtCu/C which increases the active sites. The d-band center of PtCu is lowered which facilitates the adsorption and dissociation of reactants, thereby dramatically boosting the electro-catalytic performance.

Abstract Image

超薄有序异序 CeO2 纳米颗粒作为 PtCu 催化剂的非碳载体,用于甲醇氧化和氧还原反应†。
在直接甲醇燃料电池中使用碳载体容易导致铂催化剂脱落和中毒,从而降低催化活性。为了增强金属与支撑物之间的相互作用并提高催化性能,人们对非碳材料进行了研究。在此,我们探索了具有有序-无序结构的超薄 CeO2 纳米颗粒(2D-CeO2)作为铂铜催化剂的载体。PtCu/2D-CeO2 在甲醇氧化反应(MOR)中的最高电流密度为 37.24 mA cm-2,在氧还原反应中的极限电流密度为 4.82 mA cm-2。二维-CeO2 的有序-无序结构产生了大量的氧空位和强烈的金属-支撑相互作用。PtCu/2D-CeO2 的 Pt0 比例远高于 PtCu/C,从而增加了活性位点。PtCu 的 d 带中心降低,有利于反应物的吸附和解离,从而显著提高了电催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信