Ti3C2Tx MXene coupled Co(OH)2: a stable electrocatalyst for the hydrogen evolution reaction in alkaline media

Muhammad Yameen Solangi, Aashiq Ali Lakhair, Farkhanda Zaman Dayo, Rehan Ali Qureshi, Abdulaziz Alhazaa, Muhammad Ali Shar, Abdul Jalil Laghari, Imtiaz Ali Soomro, Muhammad Nazim Lakhan, Abdul Hanan and Umair Aftab
{"title":"Ti3C2Tx MXene coupled Co(OH)2: a stable electrocatalyst for the hydrogen evolution reaction in alkaline media","authors":"Muhammad Yameen Solangi, Aashiq Ali Lakhair, Farkhanda Zaman Dayo, Rehan Ali Qureshi, Abdulaziz Alhazaa, Muhammad Ali Shar, Abdul Jalil Laghari, Imtiaz Ali Soomro, Muhammad Nazim Lakhan, Abdul Hanan and Umair Aftab","doi":"10.1039/D4SU00392F","DOIUrl":null,"url":null,"abstract":"<p >Green hydrogen (H<small><sub>2</sub></small>) production <em>via</em> water electrolysis is a promising technique. Within this domain, two dimensional (2D) materials are gaining more attention throughout the world particularly in energy conversion/storage devices due to their unique features. Herein, this study focuses on the development of sustainable, durable, and economical electrocatalysts based on titanium carbide (Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small>) MXene and cobalt hydroxide (Co(OH)<small><sub>2</sub></small>) as a composite. Ti<small><sub>3</sub></small>C<small><sub>2</sub></small>T<small><sub><em>x</em></sub></small> has been doped into Co(OH)<small><sub>2</sub></small> (CT nanostructure) with varying concentrations by the aqueous chemical growth method. The as-prepared electrocatalysts (CT-15 and CT-30) have been investigated through different physicochemical characterization studies including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and electrochemical analysis in order to access their morphology, crystalline phase homogeneity, surface functionalization, and electrochemical behaviour for the HER. It is observed that the as-prepared material (CT-30) exhibits superior hydrogen evolution reaction (HER) activity in 1.0 M potassium hydroxide (KOH). The optimised electrocatalyst CT-30 demonstrates an overpotential of 380 mV at a current density of 10 mA cm<small><sup>−2</sup></small> with a 99 mV dec<small><sup>−1</sup></small> Tafel slope value, showing fast reaction kinetics. Moreover, it offers a low charge transfer resistance (<em>R</em><small><sub>ct</sub></small>) accompanied by good stability, high electrochemical active surface area (ECSA), and durability for 30 h, as evident for efficient HER activity. This novel electrocatalyst can contribute to the replacement of noble metal-based electrocatalysts for practical usage in energy conversion/storage systems.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 11","pages":" 3424-3435"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/su/d4su00392f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/su/d4su00392f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Green hydrogen (H2) production via water electrolysis is a promising technique. Within this domain, two dimensional (2D) materials are gaining more attention throughout the world particularly in energy conversion/storage devices due to their unique features. Herein, this study focuses on the development of sustainable, durable, and economical electrocatalysts based on titanium carbide (Ti3C2Tx) MXene and cobalt hydroxide (Co(OH)2) as a composite. Ti3C2Tx has been doped into Co(OH)2 (CT nanostructure) with varying concentrations by the aqueous chemical growth method. The as-prepared electrocatalysts (CT-15 and CT-30) have been investigated through different physicochemical characterization studies including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and electrochemical analysis in order to access their morphology, crystalline phase homogeneity, surface functionalization, and electrochemical behaviour for the HER. It is observed that the as-prepared material (CT-30) exhibits superior hydrogen evolution reaction (HER) activity in 1.0 M potassium hydroxide (KOH). The optimised electrocatalyst CT-30 demonstrates an overpotential of 380 mV at a current density of 10 mA cm−2 with a 99 mV dec−1 Tafel slope value, showing fast reaction kinetics. Moreover, it offers a low charge transfer resistance (Rct) accompanied by good stability, high electrochemical active surface area (ECSA), and durability for 30 h, as evident for efficient HER activity. This novel electrocatalyst can contribute to the replacement of noble metal-based electrocatalysts for practical usage in energy conversion/storage systems.

Abstract Image

Ti3C2Tx MXene 耦合 Co(OH)2:碱性介质中氢进化反应的稳定电催化剂
通过电解水生产绿色氢气(H2)是一项前景广阔的技术。在这一领域,二维(2D)材料因其独特的特性而越来越受到全世界的关注,尤其是在能源转换/存储设备方面。在此,本研究侧重于开发基于碳化钛(Ti3C2Tx)MXene 和氢氧化钴(Co(OH)2)复合材料的可持续、耐用且经济的电催化剂。通过水化学生长法将不同浓度的 Ti3C2Tx 掺杂到 Co(OH)2(CT 纳米结构)中。通过不同的物理化学表征研究,包括 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、傅立叶变换红外光谱 (FTIR) 和电化学分析,对制备的电催化剂(CT-15 和 CT-30)进行了研究,以了解它们的形态、晶相均匀性、表面官能化和 HER 的电化学行为。据观察,制备的材料(CT-30)在 1.0 M 氢氧化钾(KOH)中表现出卓越的氢进化反应(HER)活性。优化后的 CT-30 电催化剂在 10 mA cm-2 电流密度下的过电位为 380 mV,Tafel 斜率值为 99 mV dec-1,显示出快速的反应动力学。此外,它还具有较低的电荷转移电阻(Rct)、良好的稳定性、较高的电化学活性表面积(ECSA)和 30 小时的耐久性,这些都是高效 HER 活性的明证。这种新型电催化剂有助于取代贵金属电催化剂,在能量转换/储存系统中得到实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信