Investigation of Biodegradable Metals for Green and Sustainable Temperature Sensors

Qazi Zahid Husain;Dianne Corsino;Soufiane Krik;Andrea Stona;Niko Münzenrieder;Giuseppe Cantarella
{"title":"Investigation of Biodegradable Metals for Green and Sustainable Temperature Sensors","authors":"Qazi Zahid Husain;Dianne Corsino;Soufiane Krik;Andrea Stona;Niko Münzenrieder;Giuseppe Cantarella","doi":"10.1109/JFLEX.2024.3449832","DOIUrl":null,"url":null,"abstract":"The management of electronics waste and the development of sustainable end-of-life strategies are key aspects of the green evolution of the electronics industry. To address this global issue, we implemented thin-film resistance temperature detectors (RTDs) using green sensing metals, such as Mg, Mo, and Zn, and poly-ether ether ketone (PEEK), as a biocompatible, flexible, and thermally resistant substrate. The environmentally friendly RTDs were characterized in a range of temperature, from 25 °C to 70 °C, showing consistent response and average sensitivities of \n<inline-formula> <tex-math>$1.1\\times 10^{-1}$ </tex-math></inline-formula>\n%/°C, \n<inline-formula> <tex-math>$7\\times 10^{-2}$ </tex-math></inline-formula>\n%/°C, and \n<inline-formula> <tex-math>$5.8\\times 10^{-2}$ </tex-math></inline-formula>\n%/°C for Mg, Mo, and Zn, respectively. At a constant temperature 25 °C, the effect of humidity variation from 10% to 90% on the resistance of the sensors was observed to be \n<inline-formula> <tex-math>$2.0\\times 10^{-5}$ </tex-math></inline-formula>\n%/relative humidity (RH), \n<inline-formula> <tex-math>$3.4\\times 10^{-2}$ </tex-math></inline-formula>\n%/RH, and \n<inline-formula> <tex-math>$5\\times 10^{-3}$ </tex-math></inline-formula>\n%/RH, respectively, for Mg, Mo, and Zn RTDs. Furthermore, the sensor’s response to mechanical strain was evaluated by bending the devices down to a 10-mm bending radius. In addition, the dissolution of the green RTDs in water allows the reusability of the substrate for a new fabrication batch, minimizing the amount of electronics waste generated. Through this study, a promising solution to environmental concerns, realizing is endowed for realizing temperature sensors, with applications in green and sustainable wearable systems is demonstrated.","PeriodicalId":100623,"journal":{"name":"IEEE Journal on Flexible Electronics","volume":"3 7","pages":"306-311"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10670483","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Flexible Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10670483/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The management of electronics waste and the development of sustainable end-of-life strategies are key aspects of the green evolution of the electronics industry. To address this global issue, we implemented thin-film resistance temperature detectors (RTDs) using green sensing metals, such as Mg, Mo, and Zn, and poly-ether ether ketone (PEEK), as a biocompatible, flexible, and thermally resistant substrate. The environmentally friendly RTDs were characterized in a range of temperature, from 25 °C to 70 °C, showing consistent response and average sensitivities of $1.1\times 10^{-1}$ %/°C, $7\times 10^{-2}$ %/°C, and $5.8\times 10^{-2}$ %/°C for Mg, Mo, and Zn, respectively. At a constant temperature 25 °C, the effect of humidity variation from 10% to 90% on the resistance of the sensors was observed to be $2.0\times 10^{-5}$ %/relative humidity (RH), $3.4\times 10^{-2}$ %/RH, and $5\times 10^{-3}$ %/RH, respectively, for Mg, Mo, and Zn RTDs. Furthermore, the sensor’s response to mechanical strain was evaluated by bending the devices down to a 10-mm bending radius. In addition, the dissolution of the green RTDs in water allows the reusability of the substrate for a new fabrication batch, minimizing the amount of electronics waste generated. Through this study, a promising solution to environmental concerns, realizing is endowed for realizing temperature sensors, with applications in green and sustainable wearable systems is demonstrated.
研究用于绿色和可持续温度传感器的可生物降解金属
管理电子废物和制定可持续的报废策略是电子工业绿色发展的关键环节。为解决这一全球性问题,我们采用镁、钼和锌等绿色传感金属以及聚醚醚酮(PEEK)作为生物相容性、柔性和耐热基材,制造出了薄膜电阻温度检测器(RTD)。环保型热电阻在 25 ℃ 至 70 ℃ 的温度范围内表现出一致的响应,镁、钼和锌的平均灵敏度分别为 1.1 次方 10^{-1}$ %/℃、7 次方 10^{-2}$ %/℃和 5.8 次方 10^{-2}$ %/℃。在恒温 25 °C 的条件下,湿度变化从 10% 到 90% 对传感器电阻的影响分别为:镁、钼和锌热电阻的相对湿度(RH)为 2.0 倍 10^{-5}$ %/RH、3.4 倍 10^{-2}$ %/RH、5 倍 10^{-3}$ %/RH。此外,通过将器件弯曲至 10 毫米的弯曲半径,还评估了传感器对机械应变的响应。此外,绿色热电阻在水中溶解后,可在新的制造批次中重复使用基底,从而最大限度地减少了电子废物的产生量。通过这项研究,我们展示了一种有希望解决环境问题的解决方案,即实现温度传感器,并将其应用于绿色和可持续的可穿戴系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信