A Compact Single-Pixel Spectral Measurement System

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Peiqi Yang;Mingju Xin;Yaopeng Wei;Chuanxin Teng;Ming Chen;Yu Cheng;Jun Yin;Libo Yuan;Shijie Deng
{"title":"A Compact Single-Pixel Spectral Measurement System","authors":"Peiqi Yang;Mingju Xin;Yaopeng Wei;Chuanxin Teng;Ming Chen;Yu Cheng;Jun Yin;Libo Yuan;Shijie Deng","doi":"10.1109/JPHOT.2024.3486223","DOIUrl":null,"url":null,"abstract":"A compact single-pixel spectral measurement system based on semiconductor diodes is described in this work. There are no optical components in the system configuration, which contribute to reducing the size of the equipment. Incident spectra can be reconstructed by using the photocurrent of semiconductor diode and spectral response functions. After data collection, data analysis, algorithm processing and other steps.The existing equipment can accurately reconstruct the spectra of narrowband monochromatic light at 508–556 nm and broadband light sources in the 478–598 nm wavelength range, achieving high resolution of 6 nm broadband spectra. The peak signal-to-noise ratio (PSNR) of the reconstructed spectra can reach up to 33.44 dB.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 6","pages":"1-7"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10734238","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10734238/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A compact single-pixel spectral measurement system based on semiconductor diodes is described in this work. There are no optical components in the system configuration, which contribute to reducing the size of the equipment. Incident spectra can be reconstructed by using the photocurrent of semiconductor diode and spectral response functions. After data collection, data analysis, algorithm processing and other steps.The existing equipment can accurately reconstruct the spectra of narrowband monochromatic light at 508–556 nm and broadband light sources in the 478–598 nm wavelength range, achieving high resolution of 6 nm broadband spectra. The peak signal-to-noise ratio (PSNR) of the reconstructed spectra can reach up to 33.44 dB.
紧凑型单像素光谱测量系统
本文介绍了一种基于半导体二极管的紧凑型单像素光谱测量系统。系统配置中没有光学元件,这有助于减小设备的体积。入射光谱可利用半导体二极管的光电流和光谱响应函数重建。经过数据采集、数据分析、算法处理等步骤,现有设备可精确重建 508-556 nm 波长窄带单色光和 478-598 nm 波长范围宽带光源的光谱,实现 6 nm 宽带光谱的高分辨率。重建光谱的峰值信噪比(PSNR)可达 33.44 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Photonics Journal
IEEE Photonics Journal ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
4.50
自引率
8.30%
发文量
489
审稿时长
1.4 months
期刊介绍: Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信