Low-Temperature Coefficient and Large Range Pressure Sensor Based on Single End Fixed-Support U-Beam Resonator

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiayin Li;Xiaowen Wang;Zhiyin Cheng;Xiaohui Du;Lingyun Wang
{"title":"Low-Temperature Coefficient and Large Range Pressure Sensor Based on Single End Fixed-Support U-Beam Resonator","authors":"Jiayin Li;Xiaowen Wang;Zhiyin Cheng;Xiaohui Du;Lingyun Wang","doi":"10.1109/JSEN.2024.3454281","DOIUrl":null,"url":null,"abstract":"Temperature variations induce the temperature coefficient effect in microelectromechanical systems (MEMS) resonant pressure sensors, affecting the mechanical properties of vibrating materials and causing frequency drift, which reduces sensor accuracy. To address this, we designed a resonant pressure sensor with a U-shaped beam structure configured in a single-ended fixed form. This design aims to reduce thermal stress on the resonant beam and minimize the impact of temperature on beam stiffness, thereby improving measurement accuracy. Finite element analysis shows that, within a full scale of 120 MPa and a temperature range of \n<inline-formula> <tex-math>$- 45~^{\\circ }$ </tex-math></inline-formula>\nC to \n<inline-formula> <tex-math>$80~^{\\circ }$ </tex-math></inline-formula>\nC, thermal stress in the main vibrating beam decreases from 75 MPa in the double-end fixed form to 0.938 MPa in the single-end fixed form, and the temperature coefficient reduces from 3.5 to 0.2 Hz/°C. Fabricated using MEMS bulk silicon technology, the sensor undergoes postprocessing with a packaging shell for high-pressure measurement. Experimental data indicate that under gas pressure from 0 to 30 MPa, the sensor sensitivity is 72.4 Hz/MPa, and within the temperature range of \n<inline-formula> <tex-math>$- 45~^{\\circ }$ </tex-math></inline-formula>\nC to \n<inline-formula> <tex-math>$80~^{\\circ }$ </tex-math></inline-formula>\nC, the temperature coefficient is less than or equal to 0.2 Hz/°C. The reduced temperature coefficient ensures that pressure-frequency curves at different temperatures almost coincide. Using a polynomial fitting algorithm, the measurement error is less than 0.015%. This design significantly reduces thermal stress and temperature sensitivity, offering a more reliable and accurate pressure measurement solution across varying thermal conditions. Thus, the U-shaped beam structure offers a viable solution to the temperature coefficient of frequency (TCF) problem in resonant pressure sensors.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 21","pages":"35413-35422"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10675331/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Temperature variations induce the temperature coefficient effect in microelectromechanical systems (MEMS) resonant pressure sensors, affecting the mechanical properties of vibrating materials and causing frequency drift, which reduces sensor accuracy. To address this, we designed a resonant pressure sensor with a U-shaped beam structure configured in a single-ended fixed form. This design aims to reduce thermal stress on the resonant beam and minimize the impact of temperature on beam stiffness, thereby improving measurement accuracy. Finite element analysis shows that, within a full scale of 120 MPa and a temperature range of $- 45~^{\circ }$ C to $80~^{\circ }$ C, thermal stress in the main vibrating beam decreases from 75 MPa in the double-end fixed form to 0.938 MPa in the single-end fixed form, and the temperature coefficient reduces from 3.5 to 0.2 Hz/°C. Fabricated using MEMS bulk silicon technology, the sensor undergoes postprocessing with a packaging shell for high-pressure measurement. Experimental data indicate that under gas pressure from 0 to 30 MPa, the sensor sensitivity is 72.4 Hz/MPa, and within the temperature range of $- 45~^{\circ }$ C to $80~^{\circ }$ C, the temperature coefficient is less than or equal to 0.2 Hz/°C. The reduced temperature coefficient ensures that pressure-frequency curves at different temperatures almost coincide. Using a polynomial fitting algorithm, the measurement error is less than 0.015%. This design significantly reduces thermal stress and temperature sensitivity, offering a more reliable and accurate pressure measurement solution across varying thermal conditions. Thus, the U-shaped beam structure offers a viable solution to the temperature coefficient of frequency (TCF) problem in resonant pressure sensors.
基于单端固定支撑 U 型梁谐振器的低温度系数、大量程压力传感器
温度变化会诱发微机电系统(MEMS)谐振压力传感器的温度系数效应,影响振动材料的机械特性并导致频率漂移,从而降低传感器的精度。为解决这一问题,我们设计了一种具有 U 形梁结构的谐振压力传感器,并将其配置为单端固定形式。这种设计旨在减少谐振梁上的热应力,最大限度地降低温度对梁刚度的影响,从而提高测量精度。有限元分析表明,在 120 兆帕的满刻度和 $- 45~^{\circ }$ C 至 $80~^{\circ }$ C 的温度范围内,主振动梁的热应力从双端固定形式的 75 兆帕降至单端固定形式的 0.938 兆帕,温度系数从 3.5 Hz/°C 降至 0.2 Hz/°C。该传感器采用 MEMS 体硅技术制造,经过封装外壳的后处理,可进行高压测量。实验数据表明,在 0 至 30 兆帕的气体压力下,传感器的灵敏度为 72.4 Hz/MPa,在 $- 45~^{\circ }$ C 至 $80~^{\circ }$ C 的温度范围内,温度系数小于或等于 0.2 Hz/°C。温度系数的降低确保了不同温度下的压力-频率曲线几乎重合。采用多项式拟合算法,测量误差小于 0.015%。这种设计大大降低了热应力和温度敏感性,为不同温度条件下的压力测量提供了更可靠、更精确的解决方案。因此,U 形梁结构为谐振压力传感器的频率温度系数 (TCF) 问题提供了可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信