Wentai Zhang, Xueyang Wu, He Wang, Ruopei Wu, Congcong Deng, Qian Xu, Xiaohai Liu, Xuexue Bai, Shuangjian Yang, Xiaoxu Li, Ming Feng, Qiang Yang, Renzhi Wang
{"title":"Federated Learning for Predicting Postoperative Remission of Patients with Acromegaly: A Multicentered study.","authors":"Wentai Zhang, Xueyang Wu, He Wang, Ruopei Wu, Congcong Deng, Qian Xu, Xiaohai Liu, Xuexue Bai, Shuangjian Yang, Xiaoxu Li, Ming Feng, Qiang Yang, Renzhi Wang","doi":"10.1016/j.wneu.2024.10.091","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Decentralized federated learning (DFL) may serve as a useful framework for machine learning (ML) tasks in multicentered studies, maximizing the use of clinical data without data sharing. We aim to propose the first workflow of DFL for ML tasks in multicentered studies, which can be as powerful as those using centralized data.</p><p><strong>Methods: </strong>A DFL workflow was developed with four steps: registration, local computation, model update, and inspection. A total of 598 participants with acromegaly from PUMCH, and 120 participants from XWH were enrolled. The cohort from PUMCH was further split into five centers. Nine clinical features were incorporated into ML-based models trained based on four algorithms: LR, GBDT, SVM, and DNN. The area under the curve (AUC) of receiver operating characteristic curves was used to evaluate the performance of the models.</p><p><strong>Results: </strong>Models trained based on DFL workflow performed better than most models in LR (P<0.05), all models in DNN, SVM, and GBDT (P<0.05). Models trained on DFL workflow performed as powerful as models trained on centralized data in LR, DNN, and SVM (P>0.05).</p><p><strong>Conclusions: </strong>We demonstrate that the DFL workflow without data sharing should be a more appropriate method in ML tasks in multicentered studies. And the DFL workflow should be further exploited in clinical researches in other departments and it can encourage and facilitate multicentered studies.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.wneu.2024.10.091","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Decentralized federated learning (DFL) may serve as a useful framework for machine learning (ML) tasks in multicentered studies, maximizing the use of clinical data without data sharing. We aim to propose the first workflow of DFL for ML tasks in multicentered studies, which can be as powerful as those using centralized data.
Methods: A DFL workflow was developed with four steps: registration, local computation, model update, and inspection. A total of 598 participants with acromegaly from PUMCH, and 120 participants from XWH were enrolled. The cohort from PUMCH was further split into five centers. Nine clinical features were incorporated into ML-based models trained based on four algorithms: LR, GBDT, SVM, and DNN. The area under the curve (AUC) of receiver operating characteristic curves was used to evaluate the performance of the models.
Results: Models trained based on DFL workflow performed better than most models in LR (P<0.05), all models in DNN, SVM, and GBDT (P<0.05). Models trained on DFL workflow performed as powerful as models trained on centralized data in LR, DNN, and SVM (P>0.05).
Conclusions: We demonstrate that the DFL workflow without data sharing should be a more appropriate method in ML tasks in multicentered studies. And the DFL workflow should be further exploited in clinical researches in other departments and it can encourage and facilitate multicentered studies.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.