Zero-shot counting with a dual-stream neural network model.

IF 14.7 1区 医学 Q1 NEUROSCIENCES
Jessica A F Thompson, Hannah Sheahan, Tsvetomira Dumbalska, Julian D Sandbrink, Manuela Piazza, Christopher Summerfield
{"title":"Zero-shot counting with a dual-stream neural network model.","authors":"Jessica A F Thompson, Hannah Sheahan, Tsvetomira Dumbalska, Julian D Sandbrink, Manuela Piazza, Christopher Summerfield","doi":"10.1016/j.neuron.2024.10.008","DOIUrl":null,"url":null,"abstract":"<p><p>To understand a visual scene, observers need to both recognize objects and encode relational structure. For example, a scene comprising three apples requires the observer to encode concepts of \"apple\" and \"three.\" In the primate brain, these functions rely on dual (ventral and dorsal) processing streams. Object recognition in primates has been successfully modeled with deep neural networks, but how scene structure (including numerosity) is encoded remains poorly understood. Here, we built a deep learning model, based on the dual-stream architecture of the primate brain, which is able to count items \"zero-shot\"-even if the objects themselves are unfamiliar. Our dual-stream network forms spatial response fields and lognormal number codes that resemble those observed in the macaque posterior parietal cortex. The dual-stream network also makes successful predictions about human counting behavior. Our results provide evidence for an enactive theory of the role of the posterior parietal cortex in visual scene understanding.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.10.008","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To understand a visual scene, observers need to both recognize objects and encode relational structure. For example, a scene comprising three apples requires the observer to encode concepts of "apple" and "three." In the primate brain, these functions rely on dual (ventral and dorsal) processing streams. Object recognition in primates has been successfully modeled with deep neural networks, but how scene structure (including numerosity) is encoded remains poorly understood. Here, we built a deep learning model, based on the dual-stream architecture of the primate brain, which is able to count items "zero-shot"-even if the objects themselves are unfamiliar. Our dual-stream network forms spatial response fields and lognormal number codes that resemble those observed in the macaque posterior parietal cortex. The dual-stream network also makes successful predictions about human counting behavior. Our results provide evidence for an enactive theory of the role of the posterior parietal cortex in visual scene understanding.

利用双流神经网络模型进行零点计数。
要理解一个视觉场景,观察者需要同时识别物体和编码关系结构。例如,一个由三个苹果组成的场景需要观察者编码 "苹果 "和 "三 "的概念。在灵长类动物的大脑中,这些功能依赖于双重(腹侧和背侧)处理流。深度神经网络已成功模拟了灵长类动物的物体识别,但对于如何编码场景结构(包括数字)仍知之甚少。在这里,我们基于灵长类动物大脑的双流架构建立了一个深度学习模型,该模型能够 "零距离 "计数物品--即使物品本身并不熟悉。我们的双流网络形成的空间响应场和对数正态数字编码与在猕猴后顶叶皮层观察到的类似。双流网络还成功预测了人类的计数行为。我们的研究结果为后顶叶皮层在视觉场景理解中的作用的能动理论提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信