{"title":"Development of a LAMP assay for the rapid visual detection of the emerging tick-borne Songling virus.","authors":"Zheng Gui, Yuanning Ren, Qiqi Guo, Weiying Yang, Ziyan Liu, Ning Liu, Yunzhi Peng, Yu Liu, Jingfeng Yu, Lichao Sun, Zedong Wang","doi":"10.1186/s13071-024-06552-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Songling virus (SGLV) within the genus Orthonairovirus, family Nairoviridae, is an emerging tick-borne virus associated with human febrile illness. However, no rapid detection method for SGLV has been established.</p><p><strong>Methods: </strong>In this study, four primer sets targeting the nucleocapsid protein gene of SGLV were designed for use in the LAMP assay and evaluated to identify the optimal primer set. Recombinant plasmids were constructed and utilized for assessing the sensitivity of the assay. Tacheng tick virus 1 (TcTV-1)-, Beiji nairovirus (BJNV)-, Yezo virus (YEZV)-, severe fever with thrombocytopenia syndrome virus (SFTSV)-, and tick-borne encephalitis virus (TBEV)-positive tick samples were utilized to assess the specificity. Field-collected ticks were also evaluated as biological specimens to validate the assay.</p><p><strong>Results: </strong>A SGLV-specific LAMP assay was established with a detection limit of 1 × 10<sup>-2</sup> copies/μl and could be visually confirmed by a color change from purple to blue in SGLV-positive samples. No cross-reactivity was observed in the detection of TcTV-1, BJNV, YEZV, SFTSV, and TBEV using the LAMP assay. In addition to the detection of the same seven high-copy numbers of SGLV as the SYBR Green quantitative RT-PCR assay within a reduced timeframe, the developed LAMP method also effectively identified an additional sample with a low copy number in the field-collected tick samples.</p><p><strong>Conclusions: </strong>We successfully developed a sensitive, specific, and cost-effective visual method for the rapid detection of SGLV using the LAMP assay, which can be applied in pathogenesis and epidemiological surveillance studies of SGLV.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"17 1","pages":"447"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529016/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-024-06552-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Songling virus (SGLV) within the genus Orthonairovirus, family Nairoviridae, is an emerging tick-borne virus associated with human febrile illness. However, no rapid detection method for SGLV has been established.
Methods: In this study, four primer sets targeting the nucleocapsid protein gene of SGLV were designed for use in the LAMP assay and evaluated to identify the optimal primer set. Recombinant plasmids were constructed and utilized for assessing the sensitivity of the assay. Tacheng tick virus 1 (TcTV-1)-, Beiji nairovirus (BJNV)-, Yezo virus (YEZV)-, severe fever with thrombocytopenia syndrome virus (SFTSV)-, and tick-borne encephalitis virus (TBEV)-positive tick samples were utilized to assess the specificity. Field-collected ticks were also evaluated as biological specimens to validate the assay.
Results: A SGLV-specific LAMP assay was established with a detection limit of 1 × 10-2 copies/μl and could be visually confirmed by a color change from purple to blue in SGLV-positive samples. No cross-reactivity was observed in the detection of TcTV-1, BJNV, YEZV, SFTSV, and TBEV using the LAMP assay. In addition to the detection of the same seven high-copy numbers of SGLV as the SYBR Green quantitative RT-PCR assay within a reduced timeframe, the developed LAMP method also effectively identified an additional sample with a low copy number in the field-collected tick samples.
Conclusions: We successfully developed a sensitive, specific, and cost-effective visual method for the rapid detection of SGLV using the LAMP assay, which can be applied in pathogenesis and epidemiological surveillance studies of SGLV.
期刊介绍:
Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish.
Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.