{"title":"Depression and metabolic connectivity: insights into the locus coeruleus, HF-rTMS, and anxiety.","authors":"Guo-Rong Wu, Chris Baeken","doi":"10.1038/s41398-024-03171-9","DOIUrl":null,"url":null,"abstract":"<p><p>The use of repetitive Transcranial Magnetic Stimulation (rTMS) in treating major depressive disorder (MDD) is increasingly being explored in precision medicine. However, there's a notable lack of understanding of the underlying neurobiological effects, which limits our ability to correlate specific imaging features with treatment efficacy. As one possible neurobiological mechanism, clinical research has already shown that in MDD, lower norepinephrine release in the locus coeruleus (LC) triggers depressive symptoms, and pharmacological approaches that block norepinephrine reuptake boost its levels, easing depression. Surprisingly, the LC has not received a more pronounced focus in contemporary rTMS research. This study investigates the role of the LC in MDD and its response to high-frequency (HF)-rTMS using <sup>18</sup>FDG-PET imaging. We compared LC metabolic connectivity between MDD patients (n = 43) and healthy controls (n = 32). Additionally, we evaluated the predictive value of LC connectivity for HF-rTMS treatment outcomes and examined post-treatment changes in LC metabolic connectivity. Our findings revealed significant differences in LC metabolic connectivity between MDD patients and controls. Baseline LC metabolic connectivity did not predict HF-rTMS treatment outcomes. However, post-treatment analyses showed a significant correlation between improved clinical outcomes and attenuation of LC metabolic connectivity in regions associated with cognitive control and the default mode network. Notably, a reduction in state anxiety moderated this relationship, highlighting the role of anxiety in HF-rTMS efficacy for MDD treatment. Our findings suggest that LC metabolic connectivity, influenced by state anxiety levels, may be crucial in HF-rTMS efficacy, offering further insights for personalized MDD treatment strategies.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-024-03171-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of repetitive Transcranial Magnetic Stimulation (rTMS) in treating major depressive disorder (MDD) is increasingly being explored in precision medicine. However, there's a notable lack of understanding of the underlying neurobiological effects, which limits our ability to correlate specific imaging features with treatment efficacy. As one possible neurobiological mechanism, clinical research has already shown that in MDD, lower norepinephrine release in the locus coeruleus (LC) triggers depressive symptoms, and pharmacological approaches that block norepinephrine reuptake boost its levels, easing depression. Surprisingly, the LC has not received a more pronounced focus in contemporary rTMS research. This study investigates the role of the LC in MDD and its response to high-frequency (HF)-rTMS using 18FDG-PET imaging. We compared LC metabolic connectivity between MDD patients (n = 43) and healthy controls (n = 32). Additionally, we evaluated the predictive value of LC connectivity for HF-rTMS treatment outcomes and examined post-treatment changes in LC metabolic connectivity. Our findings revealed significant differences in LC metabolic connectivity between MDD patients and controls. Baseline LC metabolic connectivity did not predict HF-rTMS treatment outcomes. However, post-treatment analyses showed a significant correlation between improved clinical outcomes and attenuation of LC metabolic connectivity in regions associated with cognitive control and the default mode network. Notably, a reduction in state anxiety moderated this relationship, highlighting the role of anxiety in HF-rTMS efficacy for MDD treatment. Our findings suggest that LC metabolic connectivity, influenced by state anxiety levels, may be crucial in HF-rTMS efficacy, offering further insights for personalized MDD treatment strategies.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.