Roger Kölegård , Lena Norrbrand , Ola Eiken , Michail E. Keramidas
{"title":"Five weeks of intermittent hand exposures to alternating cold and hot stimuli do not modify finger cold-induced vasodilatation response","authors":"Roger Kölegård , Lena Norrbrand , Ola Eiken , Michail E. Keramidas","doi":"10.1016/j.jtherbio.2024.104004","DOIUrl":null,"url":null,"abstract":"<div><div>We tested the hypothesis that prolonged intermittent hand exposures to transient contrast thermal stimuli would enhance the finger cold-induced vasodilatation (CIVD) response during localized cooling. Eight healthy men participated in a 5-week regimen, during which they immersed, thrice per week, the non-dominant (EXP) hand in 8° and 43 °C water, sequentially and at 3-min intervals, for a total period of 60 min. The contralateral (i.e., dominant) hand served as the control (CON) hand. Before and after the regimen, subjects conducted two 30-min hand cold (8 °C water) provocation trials, one with the EXP hand and the other with the CON hand. In addition, a flow-mediated dilatation test was performed in the brachial artery of the EXP arm. Regardless of the hand tested, the average finger skin temperature [CON hand: pre-trial = 10.5 (1.2)°C, post-trial = 10.8 (1.3)°C and EXP hand: pre-trial = 10.7 (1.1)°C, post-trial 10.9 (1.1)°C; <em>p</em> = 0.79], and the incidence of CIVD events [CON hand: pre-trial = 1.1 (1.2) events, post-trial = 1.2 (1.1) events and EXP hand: pre-trial = 1.1 (0.8) events, post-trial = 1.1 (0.8) events; <em>p</em> = 0.88] were not affected by the 5-week regimen. The sensation of cold-induced pain was transiently alleviated following the regimen (<em>p</em> = 0.02). The flow-mediated dilatation response of the EXP brachial artery remained unaltered [pre-trial = 5.4 (3.2)%, post-trial = 4.7 (3.6)%; <em>p</em> = 0.51]. Therefore, five weeks of intermittent hand exposures to alternating cold and hot stimuli do not improve finger temperature responsiveness to sustained localized cold.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456524002225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We tested the hypothesis that prolonged intermittent hand exposures to transient contrast thermal stimuli would enhance the finger cold-induced vasodilatation (CIVD) response during localized cooling. Eight healthy men participated in a 5-week regimen, during which they immersed, thrice per week, the non-dominant (EXP) hand in 8° and 43 °C water, sequentially and at 3-min intervals, for a total period of 60 min. The contralateral (i.e., dominant) hand served as the control (CON) hand. Before and after the regimen, subjects conducted two 30-min hand cold (8 °C water) provocation trials, one with the EXP hand and the other with the CON hand. In addition, a flow-mediated dilatation test was performed in the brachial artery of the EXP arm. Regardless of the hand tested, the average finger skin temperature [CON hand: pre-trial = 10.5 (1.2)°C, post-trial = 10.8 (1.3)°C and EXP hand: pre-trial = 10.7 (1.1)°C, post-trial 10.9 (1.1)°C; p = 0.79], and the incidence of CIVD events [CON hand: pre-trial = 1.1 (1.2) events, post-trial = 1.2 (1.1) events and EXP hand: pre-trial = 1.1 (0.8) events, post-trial = 1.1 (0.8) events; p = 0.88] were not affected by the 5-week regimen. The sensation of cold-induced pain was transiently alleviated following the regimen (p = 0.02). The flow-mediated dilatation response of the EXP brachial artery remained unaltered [pre-trial = 5.4 (3.2)%, post-trial = 4.7 (3.6)%; p = 0.51]. Therefore, five weeks of intermittent hand exposures to alternating cold and hot stimuli do not improve finger temperature responsiveness to sustained localized cold.