The evolution of reproductive leaf dimorphism in two globally distributed fern families is neither stepwise nor irreversible, unless further specialization evolves.
{"title":"The evolution of reproductive leaf dimorphism in two globally distributed fern families is neither stepwise nor irreversible, unless further specialization evolves.","authors":"Jacob S Suissa, Makaleh Smith","doi":"10.1093/evolut/qpae159","DOIUrl":null,"url":null,"abstract":"<p><p>A contemporary interpretation of Dollo's Law states that the evolution of a specialized structure is irreversible. Among land plants, reproductive specialization shows a trend toward increasing complexity without reversion, raising questions about evolutionary steps and the irreversibility of reproductive complexity. Ferns exhibit varied reproductive strategies; some are dimorphic (producing separate leaves for photosynthesis and reproduction), while others are monomorphic (where one leaf is used for both photosynthesis and spore dispersal). This diversity provides an opportunity to examine the applicability of Dollo's Law in the evolution of reproductive leaf specialization. We analyzed 118 species in Blechnaceae and Onocleaceae, applying quantitative morphometrics and phylogenetic comparative methods to test the pillars of a modernized interpretation of Dollo's Law. The evolution of dimorphism in Blechnaceae is neither stepwise nor irreversible, with direct transitions from monomorphism to dimorphism, including several reversions. In contrast, Onocleaceae exhibits an irreversibility to monomorphism only upon further specialization of fertile leaves for humidity-driven spore dispersal; this suggests that additional specialization, not dimorphism alone, may facilitate irreversibility. These results provide insight into the canalization of fertile-sterile leaf dimorphism in seed plants, where the addition of traits like heterospory and integuments lead to further specialization and potential irreversibility. These findings suggest that as new specialized traits evolve alongside preexisting ones, reversion may become increasingly unlikely.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":"164-175"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpae159","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A contemporary interpretation of Dollo's Law states that the evolution of a specialized structure is irreversible. Among land plants, reproductive specialization shows a trend toward increasing complexity without reversion, raising questions about evolutionary steps and the irreversibility of reproductive complexity. Ferns exhibit varied reproductive strategies; some are dimorphic (producing separate leaves for photosynthesis and reproduction), while others are monomorphic (where one leaf is used for both photosynthesis and spore dispersal). This diversity provides an opportunity to examine the applicability of Dollo's Law in the evolution of reproductive leaf specialization. We analyzed 118 species in Blechnaceae and Onocleaceae, applying quantitative morphometrics and phylogenetic comparative methods to test the pillars of a modernized interpretation of Dollo's Law. The evolution of dimorphism in Blechnaceae is neither stepwise nor irreversible, with direct transitions from monomorphism to dimorphism, including several reversions. In contrast, Onocleaceae exhibits an irreversibility to monomorphism only upon further specialization of fertile leaves for humidity-driven spore dispersal; this suggests that additional specialization, not dimorphism alone, may facilitate irreversibility. These results provide insight into the canalization of fertile-sterile leaf dimorphism in seed plants, where the addition of traits like heterospory and integuments lead to further specialization and potential irreversibility. These findings suggest that as new specialized traits evolve alongside preexisting ones, reversion may become increasingly unlikely.
期刊介绍:
Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.