Multi-parameter MRI radiomics model in predicting postoperative progressive cerebral edema and hemorrhage after resection of meningioma.

IF 3.5 2区 医学 Q2 ONCOLOGY
Kangjian Hu, Guirong Tan, Xueqing Liao, Weiyin Vivian Liu, Wenjing Han, Lingjing Hu, Haihui Jiang, Lijuan Yang, Ming Guo, Yaohong Deng, Zhihua Meng, Xiang Liu
{"title":"Multi-parameter MRI radiomics model in predicting postoperative progressive cerebral edema and hemorrhage after resection of meningioma.","authors":"Kangjian Hu, Guirong Tan, Xueqing Liao, Weiyin Vivian Liu, Wenjing Han, Lingjing Hu, Haihui Jiang, Lijuan Yang, Ming Guo, Yaohong Deng, Zhihua Meng, Xiang Liu","doi":"10.1186/s40644-024-00796-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Postoperative progressive cerebral edema and hemorrhage (PPCEH) are major complications after meningioma resection, yet their preoperative predictive studies are limited. The aim is to develop and validate a multiparametric MRI machine learning model to predict PPCEH after meningioma resection.</p><p><strong>Methods: </strong>This retrospective study included 148 patients with meningioma. A stratified three-fold cross-validation was used to split the dataset into training and validation sets. Radiomics features from the tumor enhancement (TE) and peritumoral brain edema (PTBE) regions were extracted from T1WI, T2WI, and ADC maps. Support vector machine constructed different radiomics models, and logistic regression explored clinical risk factors. Prediction models, integrating clinical and radiomics features, were evaluated using the area under the curve (AUC), visualized in a nomogram.</p><p><strong>Results: </strong>The radiomics model based on TE and PTBE regions (training set mean AUC: 0.85 (95% CI: 0.78-0.93), validation set mean AUC: 0.77 (95%CI: 0.63-0.90)) outperformed the model with TE region solely (training set mean AUC: 0.83 (95% CI: 0.76-0.91), validation set mean AUC: 0.73 (95% CI: 0.58-0.87)). Furthermore, the combined model incorporating radiomics features, and clinical features of preoperative peritumoral edema and tumor boundary adhesion, had the best predictive performance, with AUC values of 0.87 (95% CI: 0.80-0.94) and 0.84 (95% CI: 0.72-0.95) for the training and validation set.</p><p><strong>Conclusions: </strong>We developed a novel model based on clinical characteristics and multiparametric radiomics features derived from TE and PTBE regions, which can accurately and non-invasively predict PPCEH after meningioma resection. Additionally, our findings suggest the crucial role of PTBE radiomics features in understanding the potential mechanisms of PPCEH.</p>","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529156/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-024-00796-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Postoperative progressive cerebral edema and hemorrhage (PPCEH) are major complications after meningioma resection, yet their preoperative predictive studies are limited. The aim is to develop and validate a multiparametric MRI machine learning model to predict PPCEH after meningioma resection.

Methods: This retrospective study included 148 patients with meningioma. A stratified three-fold cross-validation was used to split the dataset into training and validation sets. Radiomics features from the tumor enhancement (TE) and peritumoral brain edema (PTBE) regions were extracted from T1WI, T2WI, and ADC maps. Support vector machine constructed different radiomics models, and logistic regression explored clinical risk factors. Prediction models, integrating clinical and radiomics features, were evaluated using the area under the curve (AUC), visualized in a nomogram.

Results: The radiomics model based on TE and PTBE regions (training set mean AUC: 0.85 (95% CI: 0.78-0.93), validation set mean AUC: 0.77 (95%CI: 0.63-0.90)) outperformed the model with TE region solely (training set mean AUC: 0.83 (95% CI: 0.76-0.91), validation set mean AUC: 0.73 (95% CI: 0.58-0.87)). Furthermore, the combined model incorporating radiomics features, and clinical features of preoperative peritumoral edema and tumor boundary adhesion, had the best predictive performance, with AUC values of 0.87 (95% CI: 0.80-0.94) and 0.84 (95% CI: 0.72-0.95) for the training and validation set.

Conclusions: We developed a novel model based on clinical characteristics and multiparametric radiomics features derived from TE and PTBE regions, which can accurately and non-invasively predict PPCEH after meningioma resection. Additionally, our findings suggest the crucial role of PTBE radiomics features in understanding the potential mechanisms of PPCEH.

预测脑膜瘤切除术后进行性脑水肿和出血的多参数磁共振成像放射组学模型。
背景:术后进行性脑水肿和出血(PPCEH)是脑膜瘤切除术后的主要并发症,但其术前预测研究却很有限。本研究旨在开发并验证一种多参数磁共振成像机器学习模型,以预测脑膜瘤切除术后的进行性脑水肿和出血:这项回顾性研究纳入了 148 例脑膜瘤患者。方法:这项回顾性研究纳入了 148 例脑膜瘤患者,采用分层三重交叉验证将数据集分为训练集和验证集。从T1WI、T2WI和ADC图中提取肿瘤强化(TE)和瘤周脑水肿(PTBE)区域的放射组学特征。支持向量机构建了不同的放射组学模型,逻辑回归探索了临床风险因素。使用曲线下面积(AUC)对整合了临床和放射组学特征的预测模型进行了评估,并以提名图的形式直观显示:结果:基于TE和PTBE区域的放射组学模型(训练集平均AUC:0.85 (95% CI)0.85 (95%CI: 0.78-0.93), 验证集平均 AUC:0.77 (95%CI: 0.63-0.90))优于仅使用 TE 区域的模型(训练集平均 AUC:0.83 (95% CI: 0.76-0.91), 验证集平均 AUC:0.73(95% CI:0.58-0.87))。此外,结合放射组学特征、术前瘤周水肿和肿瘤边界粘连等临床特征的组合模型具有最佳预测性能,训练集和验证集的AUC值分别为0.87(95% CI:0.80-0.94)和0.84(95% CI:0.72-0.95):我们根据临床特征和来自TE和PTBE区域的多参数放射组学特征建立了一个新模型,该模型可以准确、无创地预测脑膜瘤切除术后的PPCEH。此外,我们的研究结果表明,PTBE放射组学特征在理解PPCEH的潜在机制方面起着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer Imaging
Cancer Imaging ONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology. The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include: Breast Imaging Chest Complications of treatment Ear, Nose & Throat Gastrointestinal Hepatobiliary & Pancreatic Imaging biomarkers Interventional Lymphoma Measurement of tumour response Molecular functional imaging Musculoskeletal Neuro oncology Nuclear Medicine Paediatric.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信