Steady-State Drug Exposure of Repeated IV Bolus Administration for a One Compartment Pharmacokinetic Model with Sigmoidal Hill Elimination.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Meizhu Cao, Xiaotian Wu, Jun Li
{"title":"Steady-State Drug Exposure of Repeated IV Bolus Administration for a One Compartment Pharmacokinetic Model with Sigmoidal Hill Elimination.","authors":"Meizhu Cao, Xiaotian Wu, Jun Li","doi":"10.1007/s11538-024-01375-0","DOIUrl":null,"url":null,"abstract":"<p><p>Drugs exhibiting nonlinear pharmacokinetics hold significant importance in drug research and development. However, evaluating drug exposure accurately is challenging with the current formulae established for linear pharmacokinetics. This article aims to investigate the steady-state drug exposure for a one-compartment pharmacokinetic (PK) model with sigmoidal Hill elimination, focusing on three key topics: the comparison between steady-state drug exposure of repeated intravenous (IV) bolus ( <math><msub><mtext>AUC</mtext> <mrow><mi>ss</mi></mrow> </msub> </math> ) and total drug exposure after a single IV bolus ( <math><msub><mtext>AUC</mtext> <mrow><mn>0</mn> <mo>-</mo> <mi>∞</mi></mrow> </msub> </math> ); the evolution of steady-state drug concentration with varying dosing frequencies; and the control of drug pharmacokinetics in multiple-dose therapeutic scenarios. For the first topic, we established conditions for the existence of <math><msub><mtext>AUC</mtext> <mrow><mi>ss</mi></mrow> </msub> </math> , derived an explicit formula for its calculation, and compared it with <math><msub><mtext>AUC</mtext> <mrow><mn>0</mn> <mo>-</mo> <mi>∞</mi></mrow> </msub> </math> . For the second, we identified the trending properties of steady-state average and trough concentrations concerning dosing frequency. For the third, we developed formulae to compute dose and dosing time for both regular and irregular dosing scenarios. As an example, our findings were applied to a real drug model of progesterone used in lactating dairy cows. In conclusion, these results provide a theoretical foundation for designing rational dosage regimens and conducting therapeutic trials.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01375-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Drugs exhibiting nonlinear pharmacokinetics hold significant importance in drug research and development. However, evaluating drug exposure accurately is challenging with the current formulae established for linear pharmacokinetics. This article aims to investigate the steady-state drug exposure for a one-compartment pharmacokinetic (PK) model with sigmoidal Hill elimination, focusing on three key topics: the comparison between steady-state drug exposure of repeated intravenous (IV) bolus ( AUC ss ) and total drug exposure after a single IV bolus ( AUC 0 - ); the evolution of steady-state drug concentration with varying dosing frequencies; and the control of drug pharmacokinetics in multiple-dose therapeutic scenarios. For the first topic, we established conditions for the existence of AUC ss , derived an explicit formula for its calculation, and compared it with AUC 0 - . For the second, we identified the trending properties of steady-state average and trough concentrations concerning dosing frequency. For the third, we developed formulae to compute dose and dosing time for both regular and irregular dosing scenarios. As an example, our findings were applied to a real drug model of progesterone used in lactating dairy cows. In conclusion, these results provide a theoretical foundation for designing rational dosage regimens and conducting therapeutic trials.

具有西格玛阶梯消除作用的单室药代动力学模型的重复静脉注射给药的稳态药物暴露。
表现出非线性药代动力学的药物在药物研发中具有重要意义。然而,使用目前为线性药代动力学建立的公式来准确评估药物暴露量具有挑战性。本文旨在研究具有西格玛希尔消除作用的单室药代动力学(PK)模型的稳态药物暴露量,重点关注三个关键问题:重复静脉注射(IV)栓剂的稳态药物暴露量(AUC ss)与单次静脉注射后的总药物暴露量(AUC 0 - ∞)之间的比较;不同给药频率下稳态药物浓度的演变;以及多剂量治疗情况下药物药代动力学的控制。对于第一个主题,我们确定了 AUC ss 的存在条件,推导出了一个明确的计算公式,并将其与 AUC 0 - ∞ 进行了比较。对于第二个主题,我们确定了稳态平均浓度和谷底浓度与用药频率有关的趋势特性。第三,我们开发了计算定期和不定期用药情况下的剂量和用药时间的公式。例如,我们将研究结果应用于泌乳奶牛使用黄体酮的实际药物模型。总之,这些结果为设计合理的剂量方案和进行治疗试验提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信