Maude Ducrocq, Arianna Rinaldi, Boris Halgand, Joëlle Veziers, Pierre Guihard, Frank Boury, Antoine Debuigne
{"title":"Bioactive dextran-based scaffolds from emulsion templates co-stabilized by poly(lactic-co-glycolic acid) nanocarriers.","authors":"Maude Ducrocq, Arianna Rinaldi, Boris Halgand, Joëlle Veziers, Pierre Guihard, Frank Boury, Antoine Debuigne","doi":"10.1016/j.colsurfb.2024.114342","DOIUrl":null,"url":null,"abstract":"<p><p>Porous polymer scaffolds are widely investigated as temporary implants in regenerative medicine to repair damaged tissues. While biocompatibility, degradability, mechanical properties comparable to the native tissues and controlled porosity are prerequisite for these scaffolds, their loading with pharmaceutical or biological active ingredients such as growth factors, in particular proteins, opens up new perspective for tissue engineering applications. This implies the development of scaffold loading strategies that minimize the risk of protein denaturation and allow to control their release profile. This work reports on a straightforward method for preparing bioactive dextran-based scaffolds from high internal phase emulsion (HIPE) templates containing poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) serving both as co-stabilizers for the emulsion and nanocarriers for drug or therapeutic protein models. Scaffold synthesis are achieved by photocuring of methacrylated dextran located in the external phase of a HIPE stabilized by the NPs in combination or not with a non-ionic surfactant. Fluorescent labelling of the NPs highlights their integration in the scaffold. The introduction of NPs, and even more so when combined with a surfactant, increases the stability and mechanical properties of the scaffolds. Cell viability tests demonstrate the non-toxic nature of these NPs-loaded scaffolds. The study of the release of a model protein from the scaffold, namely lysozyme, shows that its encapsulation in nanoparticles decreases the release rate and provides additional control over the release profile.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"245 ","pages":"114342"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114342","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Porous polymer scaffolds are widely investigated as temporary implants in regenerative medicine to repair damaged tissues. While biocompatibility, degradability, mechanical properties comparable to the native tissues and controlled porosity are prerequisite for these scaffolds, their loading with pharmaceutical or biological active ingredients such as growth factors, in particular proteins, opens up new perspective for tissue engineering applications. This implies the development of scaffold loading strategies that minimize the risk of protein denaturation and allow to control their release profile. This work reports on a straightforward method for preparing bioactive dextran-based scaffolds from high internal phase emulsion (HIPE) templates containing poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) serving both as co-stabilizers for the emulsion and nanocarriers for drug or therapeutic protein models. Scaffold synthesis are achieved by photocuring of methacrylated dextran located in the external phase of a HIPE stabilized by the NPs in combination or not with a non-ionic surfactant. Fluorescent labelling of the NPs highlights their integration in the scaffold. The introduction of NPs, and even more so when combined with a surfactant, increases the stability and mechanical properties of the scaffolds. Cell viability tests demonstrate the non-toxic nature of these NPs-loaded scaffolds. The study of the release of a model protein from the scaffold, namely lysozyme, shows that its encapsulation in nanoparticles decreases the release rate and provides additional control over the release profile.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.