Improved reactor design enables productivity of microbial electrosynthesis on par with classical biotechnology

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Jörg S. Deutzmann , Grace Callander , Alfred M. Spormann
{"title":"Improved reactor design enables productivity of microbial electrosynthesis on par with classical biotechnology","authors":"Jörg S. Deutzmann ,&nbsp;Grace Callander ,&nbsp;Alfred M. Spormann","doi":"10.1016/j.biortech.2024.131733","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial electrosynthesis (MES) converts (renewable) electrical energy into CO<sub>2</sub>-derived chemicals including fuels. To achieve commercial viability of this process, improvements in production rate, energy efficiency, and product titer are imperative. Employing a compact plate reactor with zero gap anode configuration and NiMo-plated reticulated vitreous carbon cathodes substantially improved electrosynthesis rates of methane and acetic acid. Electromethanogenesis rates exceeded 10 L L<sup>–1</sup><sub>catholyte</sub> d<sup>–1</sup> using an undefined mixed culture. Continuous thermophilic MES by <em>Thermoanaerobacter kivui</em> produced acetic acid at a rate of up to 3.5 g L<sup>−1</sup><sub>catholyte</sub> h<sup>−1</sup> at a titer of 14 g/L<em>,</em> surpassing continuous gas fermentation without biomass retention and on par with glucose fermentation by <em>T. kivui</em> in chemostats. Coulombic efficiencies reached 80 %–90 % and energy efficiencies up to 30 % for acetate and methane production. The performance of this plate reactor demonstrates that MES can deliver production rates that are competitive with those of established biotechnologies.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131733"},"PeriodicalIF":9.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424014378","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial electrosynthesis (MES) converts (renewable) electrical energy into CO2-derived chemicals including fuels. To achieve commercial viability of this process, improvements in production rate, energy efficiency, and product titer are imperative. Employing a compact plate reactor with zero gap anode configuration and NiMo-plated reticulated vitreous carbon cathodes substantially improved electrosynthesis rates of methane and acetic acid. Electromethanogenesis rates exceeded 10 L L–1catholyte d–1 using an undefined mixed culture. Continuous thermophilic MES by Thermoanaerobacter kivui produced acetic acid at a rate of up to 3.5 g L−1catholyte h−1 at a titer of 14 g/L, surpassing continuous gas fermentation without biomass retention and on par with glucose fermentation by T. kivui in chemostats. Coulombic efficiencies reached 80 %–90 % and energy efficiencies up to 30 % for acetate and methane production. The performance of this plate reactor demonstrates that MES can deliver production rates that are competitive with those of established biotechnologies.

Abstract Image

经过改进的反应器设计可使微生物电合成的生产率达到传统生物技术的水平。
微生物电合成(MES)将(可再生)电能转化为二氧化碳衍生化学品,包括燃料。要实现该工艺的商业可行性,必须提高生产率、能效和产品滴度。采用零间隙阳极配置和镀镍钼网状玻璃碳阴极的紧凑型板式反应器大大提高了甲烷和醋酸的电合成率。使用未定义的混合培养物,电生甲烷率超过了 10 Lcatholyte-1 d-1。基维嗜热杆菌(Thermoanaerobacter kivui)的连续嗜热 MES 产生醋酸的速率高达 3.5 g Lcatholyte-1 h-1,滴度为 14 g/L,超过了无生物质保留的连续气体发酵,与基维嗜热杆菌在恒温器中的葡萄糖发酵相当。库仑效率达到 80 %-90 %,醋酸盐和甲烷生产的能量效率高达 30 %。这种平板反应器的性能表明,MES 的生产率可与现有的生物技术相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信