Precursor-Driven Confined Synthesis of Highly Pure 5-Armchair Graphene Nanoribbons.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Weili Cui, Wendi Zhang, Kunpeng Tang, Yingzhi Chen, Kecheng Cao, Lei Shi, Guowei Yang
{"title":"Precursor-Driven Confined Synthesis of Highly Pure 5-Armchair Graphene Nanoribbons.","authors":"Weili Cui, Wendi Zhang, Kunpeng Tang, Yingzhi Chen, Kecheng Cao, Lei Shi, Guowei Yang","doi":"10.1002/smtd.202401168","DOIUrl":null,"url":null,"abstract":"<p><p>Armchair graphene nanoribbons (AGNRs) known as semiconductors are holding promise for nanoelectronics applications and sparking increased research interest. Currently, synthesis of 5-AGNRs with a quasi-metallic gap has been achieved using perylene and its halogen-containing derivatives as precursors via on-surface synthesis on a metal substrate. However, challenges in controlling the polymerization and orientation between precursor molecules have led to side reactions and the formation of by-products, posing a significant issue in purity. Here a precision synthesis of confined 5-AGNRs using molecular-designed precursors without halogens is proposed to address these challenges. Perylene and its dimer quaterrylene are utilized for filling into single-walled carbon nanotubes (SWCNTs), following a precursor-driven transition into 5-AGNRs by heat-induced polymerization and cyclodehydrogenation. SWCNTs restrict the alignment of confined quaterrylene enabling their polymerization with a head-to-tail arrangement, which results in the formation of pure 5-AGNRs with three times higher yield than that of perylene, as the free rotation capability of perylene molecules inside SWCNTs lead to the formation of 5-AGNRs concomitant with by-products. This work provides a templated route for synthesizing desired GNRs based on molecular-designed precursors and confined polymerization, bringing advantages for their applications in electronics and optoelectronics.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401168"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401168","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Armchair graphene nanoribbons (AGNRs) known as semiconductors are holding promise for nanoelectronics applications and sparking increased research interest. Currently, synthesis of 5-AGNRs with a quasi-metallic gap has been achieved using perylene and its halogen-containing derivatives as precursors via on-surface synthesis on a metal substrate. However, challenges in controlling the polymerization and orientation between precursor molecules have led to side reactions and the formation of by-products, posing a significant issue in purity. Here a precision synthesis of confined 5-AGNRs using molecular-designed precursors without halogens is proposed to address these challenges. Perylene and its dimer quaterrylene are utilized for filling into single-walled carbon nanotubes (SWCNTs), following a precursor-driven transition into 5-AGNRs by heat-induced polymerization and cyclodehydrogenation. SWCNTs restrict the alignment of confined quaterrylene enabling their polymerization with a head-to-tail arrangement, which results in the formation of pure 5-AGNRs with three times higher yield than that of perylene, as the free rotation capability of perylene molecules inside SWCNTs lead to the formation of 5-AGNRs concomitant with by-products. This work provides a templated route for synthesizing desired GNRs based on molecular-designed precursors and confined polymerization, bringing advantages for their applications in electronics and optoelectronics.

前驱体驱动的高纯度 5 臂对轴石墨烯纳米带的封闭合成。
被称为半导体的扶手石墨烯纳米带(AGNRs)有望应用于纳米电子学,并引发了越来越多的研究兴趣。目前,以过烯及其含卤衍生物为前驱体,通过在金属基底上进行表面合成,已经实现了具有准金属间隙的 5-AGNRs 的合成。然而,在控制前驱体分子之间的聚合和取向方面的挑战导致了副反应和副产物的形成,对纯度造成了很大的影响。为了解决这些难题,本文提出了一种使用分子设计的不含卤素的前体精确合成 5-AGNRs 的方法。在前驱体通过热诱导聚合和环脱氢转化为 5-AGNRs 之后,利用珀烯及其二聚体季戊四 烯填充到单壁碳纳米管(SWCNT)中。SWCNT 限制了受限四烯的排列,使其能够以头对尾的排列方式聚合,从而形成纯的 5-AGNRs,其产率是过烯烃的三倍,因为过烯烃分子在 SWCNT 内的自由旋转能力会导致 5-AGNRs 与副产品同时形成。这项工作为基于分子设计的前体和限制聚合合成所需的 GNR 提供了一条模板化路线,为其在电子和光电领域的应用带来了优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信