Metabolic engineering of Streptomyces roseosporus for increased production of clinically important antibiotic daptomycin

IF 5.7 2区 生物学
Xingwang Li, Ziwei Sang, Xuejin Zhao, Ying Wen
{"title":"Metabolic engineering of Streptomyces roseosporus for increased production of clinically important antibiotic daptomycin","authors":"Xingwang Li,&nbsp;Ziwei Sang,&nbsp;Xuejin Zhao,&nbsp;Ying Wen","doi":"10.1111/1751-7915.70038","DOIUrl":null,"url":null,"abstract":"<p>Daptomycin (DAP), a novel cyclic lipopeptide antibiotic produced by <i>Streptomyces roseosporus</i>, is clinically important for treatment of infections caused by multidrug-resistant Gram-positive pathogens, but the low yield hampers its large-scale industrial production. Here, we describe a combination metabolic engineering strategy for constructing a DAP high-yielding strain. Initially, we enhanced aspartate (Asp) precursor supply in <i>S. roseosporus</i> wild-type (WT) strain by separately inhibiting Asp degradation and competitive pathway genes using CRISPRi and overexpressing Asp synthetic pathway genes using strong promoter <i>kasOp*</i>. The resulting strains all showed increased DAP titre. Combined inhibition of <i>acsA4</i>, <i>pta</i>, <i>pyrB</i>, and <i>pyrC</i> increased DAP titre to 167.4 μg/mL (73.5% higher than WT value). Co-overexpression of <i>aspC</i>, <i>gdhA</i>, <i>ppc</i>, and <i>ecaA</i> led to DAP titre 168 μg/mL (75.7% higher than WT value). Concurrently, we constructed a chassis strain favourable for DAP production by abolishing by-product production (i.e., deleting a 21.1 kb region of the red pigment biosynthetic gene cluster (BGC)) and engineering the DAP BGC (i.e., replacing its native <i>dptEp</i> with <i>kasOp*</i>). Titre for the resulting chassis strain reached 185.8 μg/mL. Application of our Asp precursor supply strategies to the chassis strain further increased DAP titre to 302 μg/mL (2.1-fold higher than WT value). Subsequently, we cloned the engineered DAP BGC and duplicated it in the chassis strain, leading to DAP titre 274.6 μg/mL. The above strategies, in combination, resulted in maximal DAP titre 350.7 μg/mL (2.6-fold higher than WT value), representing the highest reported DAP titre in shake-flask fermentation. These findings provide an efficient combination strategy for increasing DAP production and can also be readily applied in the overproduction of other Asp-related antibiotics.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70038","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70038","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Daptomycin (DAP), a novel cyclic lipopeptide antibiotic produced by Streptomyces roseosporus, is clinically important for treatment of infections caused by multidrug-resistant Gram-positive pathogens, but the low yield hampers its large-scale industrial production. Here, we describe a combination metabolic engineering strategy for constructing a DAP high-yielding strain. Initially, we enhanced aspartate (Asp) precursor supply in S. roseosporus wild-type (WT) strain by separately inhibiting Asp degradation and competitive pathway genes using CRISPRi and overexpressing Asp synthetic pathway genes using strong promoter kasOp*. The resulting strains all showed increased DAP titre. Combined inhibition of acsA4, pta, pyrB, and pyrC increased DAP titre to 167.4 μg/mL (73.5% higher than WT value). Co-overexpression of aspC, gdhA, ppc, and ecaA led to DAP titre 168 μg/mL (75.7% higher than WT value). Concurrently, we constructed a chassis strain favourable for DAP production by abolishing by-product production (i.e., deleting a 21.1 kb region of the red pigment biosynthetic gene cluster (BGC)) and engineering the DAP BGC (i.e., replacing its native dptEp with kasOp*). Titre for the resulting chassis strain reached 185.8 μg/mL. Application of our Asp precursor supply strategies to the chassis strain further increased DAP titre to 302 μg/mL (2.1-fold higher than WT value). Subsequently, we cloned the engineered DAP BGC and duplicated it in the chassis strain, leading to DAP titre 274.6 μg/mL. The above strategies, in combination, resulted in maximal DAP titre 350.7 μg/mL (2.6-fold higher than WT value), representing the highest reported DAP titre in shake-flask fermentation. These findings provide an efficient combination strategy for increasing DAP production and can also be readily applied in the overproduction of other Asp-related antibiotics.

Abstract Image

Abstract Image

利用玫瑰孢链霉菌的代谢工程提高临床上重要的抗生素达托霉素的产量。
达托霉素(DAP)是一种由玫瑰孢链霉菌(Streptomyces roseosporus)生产的新型环脂肽抗生素,在治疗由具有多重耐药性的革兰氏阳性病原体引起的感染方面具有重要的临床意义,但其产量低阻碍了其大规模工业化生产。在此,我们介绍了构建 DAP 高产菌株的组合代谢工程策略。首先,我们利用 CRISPRi 分别抑制天冬氨酸(Asp)降解基因和竞争途径基因,并利用强启动子 kasOp* 过表达天冬氨酸合成途径基因,从而增强了 S. roseosporus 野生型(WT)菌株的天冬氨酸(Asp)前体供应。由此产生的菌株都显示出 DAP 滴度增加。acsA4、pta、PYRB和PYRC的联合抑制使DAP滴度增加到167.4微克/毫升(比WT值高73.5%)。共重表达 aspC、ghdhA、ppc 和 ecaA 可使 DAP 滴度达到 168 μg/mL(比 WT 值高 75.7%)。同时,我们通过取消副产品生产(即删除红色素生物合成基因簇(BGC)的 21.1 kb 区域)和 DAP BGC 工程(即用 kasOp* 替代其原生 dptEp)构建了有利于 DAP 生产的基质菌株。结果底盘菌株的滴度达到 185.8 μg/mL。将我们的 Asp 前体供应策略应用到基质菌株中,进一步将 DAP 滴度提高到 302 μg/mL(比 WT 值高 2.1 倍)。随后,我们克隆了工程化的 DAP BGC 并将其复制到基质菌株中,从而使 DAP 滴度达到 274.6 μg/mL。将上述策略结合使用后,DAP 滴度达到最高值 350.7 μg/mL(比 WT 值高 2.6 倍),这是目前报道的摇瓶发酵中最高的 DAP 滴度。这些发现为提高 DAP 产量提供了一种有效的组合策略,也可用于过量生产其他与 Asp 相关的抗生素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信