{"title":"Elephant herding optimized features-based fast RCNN for classifying leukemia stages.","authors":"Della Reasa Valiaveetil, Kanimozhi T","doi":"10.3233/THC-240750","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Leukemia is a cancer that develops in the bone marrow and blood that is brought on by an excessive generation of abnormal white blood cells. This disease damages deoxyribonucleic acid (DNA), which is associated with immature cells, particularly white blood cells. It is time-consuming and requires enhanced accuracy for radiologists to diagnose acute leukemia cells.</p><p><strong>Objective: </strong>To overcome this issue, we have studied the use of a novel proposed LEU-EHO NET.</p><p><strong>Methods: </strong>LEU-EHO NET has been proposed for classifying blood smear images based on leukemia-free and leukemia-infected images. Initially, the input blood smear images are pre-processed using two techniques: normalization and cropping black edges in images. The pre-processed images are then subjected to MobileNet for feature extraction. After that, Elephant Herding Optimization (EHO) is used to select the relevant feature from the retrieved characteristics. Finally, Faster RCNN is trained with the selected features to perform the classification task and discriminate between Normal and Abnormal.</p><p><strong>Results: </strong>The total accuracy of the proposed LEU-EHO NET is 99.30%. The proposed LEU-EHO NET model enhances the overall accuracy by 0.69%, 16.21%, 1.10%, 1.71%, and 1.38% better than Inception v3 XGBoost, VGGNet, DNN, SVM and MobilenetV2 respectively.</p><p><strong>Conclusion: </strong>The approach needs to be improved so that overlapped cells can be segmented more accurately. Additionally, future work might improve classification accuracy by utilizing different deep learning models.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":"167-183"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/THC-240750","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Leukemia is a cancer that develops in the bone marrow and blood that is brought on by an excessive generation of abnormal white blood cells. This disease damages deoxyribonucleic acid (DNA), which is associated with immature cells, particularly white blood cells. It is time-consuming and requires enhanced accuracy for radiologists to diagnose acute leukemia cells.
Objective: To overcome this issue, we have studied the use of a novel proposed LEU-EHO NET.
Methods: LEU-EHO NET has been proposed for classifying blood smear images based on leukemia-free and leukemia-infected images. Initially, the input blood smear images are pre-processed using two techniques: normalization and cropping black edges in images. The pre-processed images are then subjected to MobileNet for feature extraction. After that, Elephant Herding Optimization (EHO) is used to select the relevant feature from the retrieved characteristics. Finally, Faster RCNN is trained with the selected features to perform the classification task and discriminate between Normal and Abnormal.
Results: The total accuracy of the proposed LEU-EHO NET is 99.30%. The proposed LEU-EHO NET model enhances the overall accuracy by 0.69%, 16.21%, 1.10%, 1.71%, and 1.38% better than Inception v3 XGBoost, VGGNet, DNN, SVM and MobilenetV2 respectively.
Conclusion: The approach needs to be improved so that overlapped cells can be segmented more accurately. Additionally, future work might improve classification accuracy by utilizing different deep learning models.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).