Rational development of fingolimod nano-embedded microparticles as nose-to-brain neuroprotective therapy for ischemic stroke.

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Xinyue Zhang, Guangpu Su, Zitong Shao, Ho Wan Chan, Si Li, Stephanie Chow, Chi Kwan Tsang, Shing Fung Chow
{"title":"Rational development of fingolimod nano-embedded microparticles as nose-to-brain neuroprotective therapy for ischemic stroke.","authors":"Xinyue Zhang, Guangpu Su, Zitong Shao, Ho Wan Chan, Si Li, Stephanie Chow, Chi Kwan Tsang, Shing Fung Chow","doi":"10.1007/s13346-024-01721-8","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke is one of the major diseases causing varying degrees of dysfunction and disability worldwide. The current management of ischemic stroke poses significant challenges due to short therapeutic windows and limited efficacy, highlighting the pressing need for novel neuroprotective treatment strategies. Previous studies have shown that fingolimod (FIN) is a promising neuroprotective drug. Here, we report the rational development of FIN nano-embedded nasal powders using full factorial design experiments, aiming to provide rapid neuroprotection after ischemic stroke. Flash nanoprecipitation was employed to produce FIN nanosuspensions with the aid of polyvinylpyrrolidone and cholesterol as stabilizers. The optimized nanosuspension (particle size = 134.0 ± 0.6 nm, PDI = 0.179 ± 0.021, physical stability = 72 ± 0 h, and encapsulation efficiency of FIN = 90.67 ± 0.08%) was subsequently spray-dried into a dry powder, which exhibited excellent redispersibility (RdI = 1.09 ± 0.04) and satisfactory drug deposition in the olfactory region using a customized 3D-printed nasal cast (45.4%) and an Alberta Idealized Nasal Inlet model (8.6%) at 15 L/min. The safety of the optimized FIN nano-embedded dry powder was confirmed in cytotoxicity studies with nasal (RPMI 2650 and Calu-3 cells) and brain related cells (SH-SY5Y and PC 12 cells), while the neuroprotective effects were demonstrated by observed behavioral improvements and reduced cerebral infarct size in a middle cerebral artery occlusion mouse stroke model. The neuroprotective effect was further evidenced by increased expression of anti-apoptotic protein BCL-2 and decreased expression of pro-apoptotic proteins CC3 and BAX in brain peri-infarct tissues. Our findings highlight the potential of nasal delivery of FIN nano-embedded dry powder as a rapid neuroprotective treatment strategy for acute ischemic stroke.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-024-01721-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ischemic stroke is one of the major diseases causing varying degrees of dysfunction and disability worldwide. The current management of ischemic stroke poses significant challenges due to short therapeutic windows and limited efficacy, highlighting the pressing need for novel neuroprotective treatment strategies. Previous studies have shown that fingolimod (FIN) is a promising neuroprotective drug. Here, we report the rational development of FIN nano-embedded nasal powders using full factorial design experiments, aiming to provide rapid neuroprotection after ischemic stroke. Flash nanoprecipitation was employed to produce FIN nanosuspensions with the aid of polyvinylpyrrolidone and cholesterol as stabilizers. The optimized nanosuspension (particle size = 134.0 ± 0.6 nm, PDI = 0.179 ± 0.021, physical stability = 72 ± 0 h, and encapsulation efficiency of FIN = 90.67 ± 0.08%) was subsequently spray-dried into a dry powder, which exhibited excellent redispersibility (RdI = 1.09 ± 0.04) and satisfactory drug deposition in the olfactory region using a customized 3D-printed nasal cast (45.4%) and an Alberta Idealized Nasal Inlet model (8.6%) at 15 L/min. The safety of the optimized FIN nano-embedded dry powder was confirmed in cytotoxicity studies with nasal (RPMI 2650 and Calu-3 cells) and brain related cells (SH-SY5Y and PC 12 cells), while the neuroprotective effects were demonstrated by observed behavioral improvements and reduced cerebral infarct size in a middle cerebral artery occlusion mouse stroke model. The neuroprotective effect was further evidenced by increased expression of anti-apoptotic protein BCL-2 and decreased expression of pro-apoptotic proteins CC3 and BAX in brain peri-infarct tissues. Our findings highlight the potential of nasal delivery of FIN nano-embedded dry powder as a rapid neuroprotective treatment strategy for acute ischemic stroke.

芬戈莫德纳米嵌入微粒作为缺血性脑卒中鼻-脑神经保护疗法的合理开发。
缺血性脑卒中是导致全球不同程度功能障碍和残疾的主要疾病之一。由于治疗时间短、疗效有限,目前缺血性脑卒中的治疗面临巨大挑战,因此迫切需要新型神经保护治疗策略。先前的研究表明,芬戈莫德(FIN)是一种很有前景的神经保护药物。在此,我们采用全因子设计实验合理开发了芬戈莫德纳米鼻腔包埋粉,旨在为缺血性脑卒中后提供快速神经保护。在聚乙烯吡咯烷酮和胆固醇作为稳定剂的辅助下,采用闪速纳米沉淀法制备 FIN 纳米悬浮剂。优化后的纳米悬浮液(粒度 = 134.0 ± 0.6 nm,PDI = 0.179 ± 0.021,物理稳定性 = 72 ± 0 h,FIN 的封装效率 = 90.67 ± 0.随后,使用定制的 3D 打印鼻腔铸模(45.4%)和阿尔伯塔理想化鼻腔入口模型(8.6%),以 15 升/分钟的速度,将 FIN 纳米粉末喷雾干燥成干粉,该干粉表现出优异的再分散性(RdI = 1.09 ± 0.04)和令人满意的药物在嗅觉区域的沉积。在鼻腔(RPMI 2650 和 Calu-3 细胞)和脑相关细胞(SH-SY5Y 和 PC 12 细胞)的细胞毒性研究中证实了优化的 FIN 纳米包埋干粉的安全性,而在大脑中动脉闭塞小鼠中风模型中观察到的行为改善和脑梗塞面积缩小则证明了其神经保护作用。在脑梗塞周围组织中,抗凋亡蛋白 BCL-2 的表达增加,促凋亡蛋白 CC3 和 BAX 的表达减少,进一步证明了鼻腔给药的神经保护作用。我们的研究结果凸显了鼻腔给药 FIN 纳米包埋干粉作为急性缺血性中风的一种快速神经保护治疗策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Delivery and Translational Research
Drug Delivery and Translational Research MEDICINE, RESEARCH & EXPERIMENTALPHARMACOL-PHARMACOLOGY & PHARMACY
CiteScore
11.70
自引率
1.90%
发文量
160
期刊介绍: The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions. Research focused on the following areas of translational drug delivery research will be considered for publication in the journal. Designing and developing novel drug delivery systems, with a focus on their application to disease conditions; Preclinical and clinical data related to drug delivery systems; Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes Short-term and long-term biocompatibility of drug delivery systems, host response; Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering; Image-guided drug therapy, Nanomedicine; Devices for drug delivery and drug/device combination products. In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信