Exploring the complexity of genome size reduction in angiosperms.

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Akihiro Ezoe, Motoaki Seki
{"title":"Exploring the complexity of genome size reduction in angiosperms.","authors":"Akihiro Ezoe, Motoaki Seki","doi":"10.1007/s11103-024-01518-w","DOIUrl":null,"url":null,"abstract":"<p><p>The genome sizes of angiosperms decreased significantly more than the genome sizes of their ancestors (pteridophytes and gymnosperms). Decreases in genome size involve a highly complex process, with remnants of the genome size reduction scattered across the genome and not directly linked to specific genomic structures. This is because the associated mechanisms operate on a much smaller scale than the mechanisms mediating increases in genome size. This review thoroughly summarizes the available literature regarding the molecular mechanisms underlying genome size reductions and introduces Utricularia gibba and Arabidopsis thaliana as model species for the examination of the effects of these molecular mechanisms. Additionally, we propose that phosphorus deficiency and drought stress are the major external factors contributing to decreases in genome size. Considering these factors affect almost all land plants, angiosperms likely gained the mechanisms for genome size reductions. These environmental factors may affect the retention rates of deletions, while also influencing the mutation rates of deletions via the functional diversification of the proteins facilitating double-strand break repair. The biased retention and mutation rates of deletions may have synergistic effects that enhance deletions in intergenic regions, introns, transposable elements, duplicates, and repeats, leading to a rapid decrease in genome size. We suggest that these selection pressures and associated molecular mechanisms may drive key changes in angiosperms during recurrent cycles of genome size decreases and increases.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 6","pages":"121"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530473/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-024-01518-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The genome sizes of angiosperms decreased significantly more than the genome sizes of their ancestors (pteridophytes and gymnosperms). Decreases in genome size involve a highly complex process, with remnants of the genome size reduction scattered across the genome and not directly linked to specific genomic structures. This is because the associated mechanisms operate on a much smaller scale than the mechanisms mediating increases in genome size. This review thoroughly summarizes the available literature regarding the molecular mechanisms underlying genome size reductions and introduces Utricularia gibba and Arabidopsis thaliana as model species for the examination of the effects of these molecular mechanisms. Additionally, we propose that phosphorus deficiency and drought stress are the major external factors contributing to decreases in genome size. Considering these factors affect almost all land plants, angiosperms likely gained the mechanisms for genome size reductions. These environmental factors may affect the retention rates of deletions, while also influencing the mutation rates of deletions via the functional diversification of the proteins facilitating double-strand break repair. The biased retention and mutation rates of deletions may have synergistic effects that enhance deletions in intergenic regions, introns, transposable elements, duplicates, and repeats, leading to a rapid decrease in genome size. We suggest that these selection pressures and associated molecular mechanisms may drive key changes in angiosperms during recurrent cycles of genome size decreases and increases.

探索被子植物基因组规模缩小的复杂性。
被子植物的基因组大小比其祖先(翼手目和裸子植物)的基因组大小要小得多。基因组大小的缩小涉及一个非常复杂的过程,基因组大小缩小的残留物散布在整个基因组中,与特定的基因组结构没有直接联系。这是因为与基因组大小增加的机制相比,相关机制的运作规模要小得多。本综述全面总结了有关基因组体积缩小的分子机制的现有文献,并介绍了拟南芥和拟南芥作为研究这些分子机制影响的模式物种。此外,我们还提出缺磷和干旱胁迫是导致基因组大小减小的主要外部因素。考虑到这些因素影响了几乎所有陆生植物,被子植物很可能获得了基因组大小减少的机制。这些环境因素可能会影响缺失的保留率,同时也会通过促进双链断裂修复的蛋白质的功能多样化来影响缺失的突变率。有偏差的缺失保留率和突变率可能会产生协同效应,增强基因间区、内含子、转座元件、重复序列和重复序列中的缺失,从而导致基因组规模迅速缩小。我们认为,这些选择压力和相关的分子机制可能会在基因组大小不断减小和增大的周期中推动被子植物发生关键性变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信