Harnessing Physical Entropy Noise in Structurally Metastable 1T' Molybdenum Ditelluride for True Random Number Generation.

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
ACS Catalysis Pub Date : 2024-11-13 Epub Date: 2024-11-01 DOI:10.1021/acs.nanolett.4c03957
Yang Liu, Pengyu Liu, Yingyi Wen, Zihan Liang, Songwei Liu, Lekai Song, Jingfang Pei, Xiaoyue Fan, Teng Ma, Gang Wang, Shuo Gao, Kong-Pang Pun, Xiaolong Chen, Guohua Hu
{"title":"Harnessing Physical Entropy Noise in Structurally Metastable 1T' Molybdenum Ditelluride for True Random Number Generation.","authors":"Yang Liu, Pengyu Liu, Yingyi Wen, Zihan Liang, Songwei Liu, Lekai Song, Jingfang Pei, Xiaoyue Fan, Teng Ma, Gang Wang, Shuo Gao, Kong-Pang Pun, Xiaolong Chen, Guohua Hu","doi":"10.1021/acs.nanolett.4c03957","DOIUrl":null,"url":null,"abstract":"<p><p>True random numbers are crucial for various research and engineering problems. Their generation depends upon a robust physical entropy noise. Here, we present true random number generation from the conductance noise probed in structurally metastable 1T' molybdenum ditelluride (MoTe<sub>2</sub>). The noise, fitting a Poisson process, is proved to be a robust physical entropy noise at low and even cryogenic temperatures. Noise characteristic analyses suggest the noise may originate from the polarization variations of the underlying ferroelectric dipoles in 1T' MoTe<sub>2</sub>. We demonstrate the noise allows for true random number generation, and this facilitates their use as the seed for generating high-throughput secure random numbers exceeding 1 Mbit/s, appealing for practical applications in, for instance, cryptography where data security is now critical. As an example, we show biometric information safeguarding in neural networks by using the random numbers as the mask, proving a promising data security measure in big data and artificial intelligence.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03957","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

True random numbers are crucial for various research and engineering problems. Their generation depends upon a robust physical entropy noise. Here, we present true random number generation from the conductance noise probed in structurally metastable 1T' molybdenum ditelluride (MoTe2). The noise, fitting a Poisson process, is proved to be a robust physical entropy noise at low and even cryogenic temperatures. Noise characteristic analyses suggest the noise may originate from the polarization variations of the underlying ferroelectric dipoles in 1T' MoTe2. We demonstrate the noise allows for true random number generation, and this facilitates their use as the seed for generating high-throughput secure random numbers exceeding 1 Mbit/s, appealing for practical applications in, for instance, cryptography where data security is now critical. As an example, we show biometric information safeguarding in neural networks by using the random numbers as the mask, proving a promising data security measure in big data and artificial intelligence.

Abstract Image

利用结构稳定的 1T'二碲化钼中的物理熵噪声生成真正的随机数。
真正的随机数对各种研究和工程问题至关重要。它们的产生依赖于稳健的物理熵噪声。在这里,我们介绍了从结构可蜕变的 1T' 二碲化钼 (MoTe2) 中探测到的电导噪声中生成真正随机数的方法。拟合泊松过程的噪声在低温甚至低温条件下被证明是一种稳健的物理熵噪声。噪声特性分析表明,噪声可能源自 1T' MoTe2 中潜在铁电偶极子的极化变化。我们证明这种噪声可以生成真正的随机数,这有助于将其用作生成超过 1 Mbit/s 的高吞吐量安全随机数的种子,这对数据安全至关重要的密码学等领域的实际应用很有吸引力。举例来说,我们展示了在神经网络中使用随机数作为掩码来保护生物特征信息的方法,这证明了在大数据和人工智能领域数据安全措施的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信