Enhanced high-temperature energy storage performance in all-organic dielectric films through synergistic crosslinking of chemical and physical interaction
Xianhui Dong, Yan Wang, Yutong Cao, Na Li, Jiabin Fu, Yan Wang, Junrong Yu, Zuming Hu
{"title":"Enhanced high-temperature energy storage performance in all-organic dielectric films through synergistic crosslinking of chemical and physical interaction","authors":"Xianhui Dong, Yan Wang, Yutong Cao, Na Li, Jiabin Fu, Yan Wang, Junrong Yu, Zuming Hu","doi":"10.1016/j.cej.2024.157312","DOIUrl":null,"url":null,"abstract":"Advanced electronic devices and energy systems urgently require high-temperature polymer dielectrics that can offer both high discharge energy density and energy storage efficiency. However, the capacitive properties of most polymers sharply deteriorate at elevated temperatures, due to the significant rise in leakage current density and energy loss. Herein, a new design approach is adopted to fabricate high-temperature polyetherimide (PEI) dielectrics with chemical and physical cooperative crosslinking networks, the dual-crosslinked PEI dielectrics are prepared through amine crosslinking agent and the electrostatic interaction of oppositely charged phenyl groups between triptycene (TE) and PEI chain segments. Benefiting from the increased crosslinking sites, the dual-crosslinked PEI films achieve the simultaneously enhancement in <em>T</em><sub>g</sub>, modulus and bandgap compared to un-crosslinked and single-crosslinked polymers. Meanwhile, the PEI with dual-crosslinked network displays higher chain packing density, effectively reducing the mean motion pathways of charge carriers and the conduction loss inside polymer dielectric. Consequently, the dual-crosslinked PEI containing 0.25 wt% TE delivers an outstanding discharge energy density of 2.69 J/cm<sup>3</sup> and retains excellent cyclability after 100,000 charge–discharge cycles at 200 ℃. Additionally, finite element analysis and molecular dynamics simulation further confirm that less Joule heat and tighter chain structure are formed in the dual-crosslinked polymer dielectric. This research offers a novel methodology to prepare high-performance polymer dielectrics for high-temperature applications.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"23 1","pages":""},"PeriodicalIF":13.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157312","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced electronic devices and energy systems urgently require high-temperature polymer dielectrics that can offer both high discharge energy density and energy storage efficiency. However, the capacitive properties of most polymers sharply deteriorate at elevated temperatures, due to the significant rise in leakage current density and energy loss. Herein, a new design approach is adopted to fabricate high-temperature polyetherimide (PEI) dielectrics with chemical and physical cooperative crosslinking networks, the dual-crosslinked PEI dielectrics are prepared through amine crosslinking agent and the electrostatic interaction of oppositely charged phenyl groups between triptycene (TE) and PEI chain segments. Benefiting from the increased crosslinking sites, the dual-crosslinked PEI films achieve the simultaneously enhancement in Tg, modulus and bandgap compared to un-crosslinked and single-crosslinked polymers. Meanwhile, the PEI with dual-crosslinked network displays higher chain packing density, effectively reducing the mean motion pathways of charge carriers and the conduction loss inside polymer dielectric. Consequently, the dual-crosslinked PEI containing 0.25 wt% TE delivers an outstanding discharge energy density of 2.69 J/cm3 and retains excellent cyclability after 100,000 charge–discharge cycles at 200 ℃. Additionally, finite element analysis and molecular dynamics simulation further confirm that less Joule heat and tighter chain structure are formed in the dual-crosslinked polymer dielectric. This research offers a novel methodology to prepare high-performance polymer dielectrics for high-temperature applications.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.