Quan Zhang , Liuqing Yang , Huiyun Wang , Chengwang Wu , Rui Cao , Meirong Zhao , Guanyong Su , Cui Wang
{"title":"A comprehensive evaluation of the endocrine-disrupting effects of emerging organophosphate esters","authors":"Quan Zhang , Liuqing Yang , Huiyun Wang , Chengwang Wu , Rui Cao , Meirong Zhao , Guanyong Su , Cui Wang","doi":"10.1016/j.envint.2024.109120","DOIUrl":null,"url":null,"abstract":"<div><div>The ubiquitous presence of organophosphate esters (OPEs) in the environment has prompted growing concerns about their potential health risks, particularly their endocrine-disrupting effects. This study comprehensively evaluated the endocrine-disrupting properties of six emerging OPEs: five aryl-OPEs (2-ethylhexyl diphenyl phosphate (EHDPP), tris (2-biphenylyl) phosphate (TBPP), resorcinol bis (diphenyl phosphate) (RDP), 4-hydroxyphenyl diphenyl phosphate (<em>para</em>-OH-TPHP), and 3-hydroxyphenyl diphenyl phosphate (<em>meta</em>-OH-TPHP) and one alkyl-OPE, triallyl phosphate (TAP). Our findings revealed that all tested aryl-OPEs exhibited antagonistic effects on one or more hormone receptors. Importantly, <em>para</em>-OH-TPHP demonstrated the most potent antagonistic activity, inhibiting estrogen receptor α (ERα), thyroid hormone receptor β (TRβ), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) with the concentration of test compounds showing 20 % relative inhibitory concentration (RIC<sub>20</sub>) value below 10<sup>−6</sup> mol/L (M). RDP antagonized ERα and cortical receptors (GR and MR), TBPP affected TRβ and GR, while EHDPP and <em>meta</em>-OH-TPHP targeted MR. Regarding steroidogenesis, <em>para</em>-OH-TPHP significantly inhibited genes for estrogen (<em>cyp19</em>) and cortisol synthesis (<em>cyp11b2</em>), and along with <em>meta</em>-OH-TPHP, EHDPP, TAP, and RDP downregulated <em>cyp11a1</em>, a rate-limiting enzyme in hormone synthesis. All compounds caused malformations and swimming abnormalities in zebrafish embryos/larvae at concentrations of 10<sup>−7</sup> M or higher, with <em>para</em>-OH-TPHP showing nearly 50 % peak induction. Furthermore, the six compounds tested influenced genes associated with the hypothalamic-pituitary–gonadal (HPG) axis in both zebrafish larvae and adult female zebrafish, in addition to affecting the reproductive behavior of zebrafish. A weighted scoring system was employed to rank the endocrine-disrupting potency of the OPEs, with <em>para</em>-OH-TPHP exhibiting the highest risk, followed by EHDPP, RDP, TBPP, <em>meta</em>-OH-TPHP, and TAP. Collectively, our results highlight the significant endocrine-disrupting effects of emerging OPEs, underscoring the urgent need for further research to assess their potential health implications.</div></div>","PeriodicalId":308,"journal":{"name":"Environment International","volume":"193 ","pages":"Article 109120"},"PeriodicalIF":10.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160412024007062","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The ubiquitous presence of organophosphate esters (OPEs) in the environment has prompted growing concerns about their potential health risks, particularly their endocrine-disrupting effects. This study comprehensively evaluated the endocrine-disrupting properties of six emerging OPEs: five aryl-OPEs (2-ethylhexyl diphenyl phosphate (EHDPP), tris (2-biphenylyl) phosphate (TBPP), resorcinol bis (diphenyl phosphate) (RDP), 4-hydroxyphenyl diphenyl phosphate (para-OH-TPHP), and 3-hydroxyphenyl diphenyl phosphate (meta-OH-TPHP) and one alkyl-OPE, triallyl phosphate (TAP). Our findings revealed that all tested aryl-OPEs exhibited antagonistic effects on one or more hormone receptors. Importantly, para-OH-TPHP demonstrated the most potent antagonistic activity, inhibiting estrogen receptor α (ERα), thyroid hormone receptor β (TRβ), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) with the concentration of test compounds showing 20 % relative inhibitory concentration (RIC20) value below 10−6 mol/L (M). RDP antagonized ERα and cortical receptors (GR and MR), TBPP affected TRβ and GR, while EHDPP and meta-OH-TPHP targeted MR. Regarding steroidogenesis, para-OH-TPHP significantly inhibited genes for estrogen (cyp19) and cortisol synthesis (cyp11b2), and along with meta-OH-TPHP, EHDPP, TAP, and RDP downregulated cyp11a1, a rate-limiting enzyme in hormone synthesis. All compounds caused malformations and swimming abnormalities in zebrafish embryos/larvae at concentrations of 10−7 M or higher, with para-OH-TPHP showing nearly 50 % peak induction. Furthermore, the six compounds tested influenced genes associated with the hypothalamic-pituitary–gonadal (HPG) axis in both zebrafish larvae and adult female zebrafish, in addition to affecting the reproductive behavior of zebrafish. A weighted scoring system was employed to rank the endocrine-disrupting potency of the OPEs, with para-OH-TPHP exhibiting the highest risk, followed by EHDPP, RDP, TBPP, meta-OH-TPHP, and TAP. Collectively, our results highlight the significant endocrine-disrupting effects of emerging OPEs, underscoring the urgent need for further research to assess their potential health implications.
期刊介绍:
Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review.
It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.