{"title":"GeoNet enables the accurate prediction of protein-ligand binding sites through interpretable geometric deep learning","authors":"Jiyun Han, Shizhuo Zhang, Mingming Guan, Qiuyu Li, Xin Gao, Juntao Liu","doi":"10.1016/j.str.2024.10.011","DOIUrl":null,"url":null,"abstract":"The identification of protein binding residues is essential for understanding their functions <em>in vivo</em>. However, it remains a computational challenge to accurately identify binding sites due to the lack of known residue binding patterns. Local residue spatial distribution and its interactive biophysical environment both determine binding patterns. Previous methods could not capture both information simultaneously, resulting in unsatisfactory performance. Here, we present GeoNet, an interpretable geometric deep learning model for predicting DNA, RNA, and protein binding sites by learning the latent residue binding patterns. GeoNet achieves this by introducing a coordinate-free geometric representation to characterize local residue distributions and generating an eigenspace to depict local interactive biophysical environments. Evaluation shows that GeoNet is superior compared to other leading predictors and it shows a strong interpretability of learned representations. We present three test cases, where interaction interfaces were successfully identified with GeoNet.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"136 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.10.011","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The identification of protein binding residues is essential for understanding their functions in vivo. However, it remains a computational challenge to accurately identify binding sites due to the lack of known residue binding patterns. Local residue spatial distribution and its interactive biophysical environment both determine binding patterns. Previous methods could not capture both information simultaneously, resulting in unsatisfactory performance. Here, we present GeoNet, an interpretable geometric deep learning model for predicting DNA, RNA, and protein binding sites by learning the latent residue binding patterns. GeoNet achieves this by introducing a coordinate-free geometric representation to characterize local residue distributions and generating an eigenspace to depict local interactive biophysical environments. Evaluation shows that GeoNet is superior compared to other leading predictors and it shows a strong interpretability of learned representations. We present three test cases, where interaction interfaces were successfully identified with GeoNet.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.